Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loudness constancy with varying sound source distance

Abstract

At a listener's ears, sound source power and sound source distance are confounded in measures of acoustic intensity, a physical property long thought to be the primary determinate of loudness. Although the relationship between sound source loudness and power is well known when source distance is fixed, relatively little is known about source loudness under conditions of varying distance. Here we show a robust loudness constancy, similar in many ways to visual size constancy, that results under distance-varying conditions that produce inaccurate estimates of source distance. Our results suggest that the auditory system does not require accurate distance estimates to judge source loudness, even when distance is variable. We offer an alternative explanation of loudness constancy based solely on a reverberant sound energy cue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Average loudness as a function of stimulus (diotic noise) intensity at the ear.
Figure 2: Average loudness as a function of virtual source distance for three different source power groupings within trial blocks: (+5, 0, −5), (+10, 0, −10) or (+10, −10, −30) dB.
Figure 3: Stimulus magnitude spectra (smoothed) for selected combinations of source distance and source power, as measured with a reference microphone in the absence of the listener.
Figure 4: Multiplicative constant values, k (from the power function fits shown in Fig. 2), as a function of source power.
Figure 5: Average apparent distance estimates as a function of physical source distance.

Similar content being viewed by others

References

  1. Stevens, S. S. The measurement of loudness. J. Acoust. Soc. Am. 27, 815–829 (1955).

    Article  Google Scholar 

  2. Hellman, R. P. in Ratio Scaling of Psychological Magnitude: In Honor of the Memory of S.S. Stevens (eds. Bolanowski, S. J., Gescheider, G. A. & Stevens, S. S.) 215–228 (Erlbaum, Hillsdale, New Jersey, 1991).

    Google Scholar 

  3. Lachs, G. A neural counting model based on physiological characteristics of the peripheral auditory system: V. Application to loudness estimation and intensity discrimination. IEEE Trans. Sys. Man Cybern. 14, 819–836 (1984).

    Article  Google Scholar 

  4. Zwislocki, J. J. in Handbook of Mathematical Psychology (eds. Luce, R. D., Bush, R. R. & Galanter, E.) 1–97 (Wiley, New York, 1965).

    Google Scholar 

  5. Goldstein, J. L. in Sensation and Measurement—Papers in Honor of S. S. Stevens (eds. Moskowitz, H. R., Scharf, B. & Stevens, J. C.) 223–229 (Reidel, Dordrecht, 1974).

    Book  Google Scholar 

  6. Howes, W. L. Loudness function derived from data on electrical discharge rates in auditory nerve fibers. Acustica 30, 247–259 (1974).

    Google Scholar 

  7. Mohrmann, K. Lautheitskonstanz im Entfernungswechsel. Zeitschrift für Psycologie 145, 146–199 (1939).

    Google Scholar 

  8. Fieandt, K. v. Loudness invariance in sound perception. Acta Psychologica Fennica 1, 9–20 (1951).

    Google Scholar 

  9. Shigenaga, S. The constancy of loudness and of acoustic distance. Bull. Faculty Lit. Kyushu Univ. 9, 289–333 (1965).

    Google Scholar 

  10. Allen, G. D. Acoustic level and vocal effort as cues for the loudness of speech. J. Acoust. Soc. Am. 49, 1831–1841 (1971).

    Article  CAS  Google Scholar 

  11. Mershon, D. H., Desaulniers, D. H., Kiefer, S. A., Amerson, T. L. J. & Mills, J. T. Perceived loudness and visually-determined auditory distance. Perception 10, 531–543 (1981).

    Article  CAS  Google Scholar 

  12. Kilpatrick, F. P. & Ittelson, W. H. The size–distance invariance hypothesis. Psychol. Rev. 60, 223–231 (1953).

    Article  CAS  Google Scholar 

  13. Epstein, W. & Park, J. N. Shape constancy: functional relationships and theoretical formulations. Psychol. Bull. 60, 265–288 (1963).

    Article  Google Scholar 

  14. Békésy, G. v. The moon illusion and similar auditory phenomena. Am. J. Psychol. 62, 540–552 (1949).

    Article  Google Scholar 

  15. Holt, R. E. & Thurlow, W. R. Subject orientation and judgment of distance of a sound source. J. Acoust. Soc. Am. 46, 1584–1585 (1969).

    Article  CAS  Google Scholar 

  16. Mershon, D. H. & Bowers, J. N. Absolute and relative cues for the auditory perception of egocentric distance. Perception 8, 311–322 (1979).

    Article  CAS  Google Scholar 

  17. Mershon, D. H., Ballenger, W. L., Little, A. D., McMurtry, P. L. & Buchanan, J. L. Effects of room reflectance and background noise on perceived auditory distance. Perception 18, 403–416 (1989).

    Article  CAS  Google Scholar 

  18. Nielsen, S. H. Auditory distance perception in different rooms. J. Audio Eng. Soc. 41, 755–770 (1993).

    Google Scholar 

  19. Loomis, J. M., Klatzky, R. L., Philbeck, J. W. & Golledge, R. G. Assessing auditory distance perception using perceptually directed action. Percept. Psychophys. 60, 966–980 (1998).

    Article  CAS  Google Scholar 

  20. Bronkhorst, A. W. & Houtgast, T. Auditory distance perception in rooms. Nature 397, 517–520 (1999).

    Article  CAS  Google Scholar 

  21. Gardner, M. B. Distance estimation of 0 degrees or apparent 0 degree-oriented speech signals in anechoic space. J. Acoust. Soc. Am. 45, 47–53 (1969).

    Article  CAS  Google Scholar 

  22. Mershon, D. H. & King, E. Intensity and reverberation as factors in the auditory perception of egocentric distance. Percept. Psychophys. 18, 409–415 (1975).

    Article  Google Scholar 

  23. Coleman, P. D. Dual role of frequency spectrum in determination of auditory distance. J. Acoust. Soc. Am. 44, 631–634 (1968).

    Article  CAS  Google Scholar 

  24. Brungart, D. S. & Rabinowitz, W. M. Auditory localization of nearby sources. Head-related transfer functions. J. Acoust. Soc. Am. 106, 1465–1479 (1999).

    Article  CAS  Google Scholar 

  25. Graziano, M. S. A., Reiss, L. A. J. & Gross, C. G. A neuronal representation of the location of nearby sounds. Nature 397, 428–430. (1999).

    Article  CAS  Google Scholar 

  26. Stevens, S. S. & Guirao, M. Loudness, reciprocality, and partition scales. J. Acoust. Soc. Am. 34, 1466–1471 (1962).

    Article  Google Scholar 

  27. Petersen, J. Estimation of loudness and apparent distance of pure tones in a free-field. Acustica 70, 61–65 (1990).

    Google Scholar 

  28. Da Silva, J. A. Scales for perceived egocentric distance in a large open field: comparison of three psychophysical methods. Am. J. Psychol. 98, 119–144 (1985).

    Article  CAS  Google Scholar 

  29. Wightman, F. L. & Kistler, D. J. Headphone simulation of free-field listening: I. Stimulus synthesis. J. Acoust. Soc. Am. 85, 858–867 (1989).

    Article  CAS  Google Scholar 

  30. Stevens, S. S. Psychophysics: Introduction to its Perceptual, Neural and Social Prospects (Wiley, New York, 1975).

    Google Scholar 

  31. Buus, S., Muesch, H. & Florentine, M. On loudness at threshold. J. Acoust. Soc. Am. 104, 399–410 (1998).

    Article  CAS  Google Scholar 

  32. Parker, S. & Schneider, B. A. Loudness and loudness discrimination. Percept. Psychophys. 28, 398–406 (1980).

    Article  CAS  Google Scholar 

  33. Warren, R. M. Measurement of sensory intensity. Behav. Brain Sci. 4, 175–223 (1981).

    Article  Google Scholar 

  34. Boring, E. G. The moon illusion. Am. J. Phys. 11, 55–60 (1943).

    Article  Google Scholar 

  35. Kaufman, L. & Rock, I. The moon illusion. Science 136, 953–961 (1962).

    Article  CAS  Google Scholar 

  36. Rock, I. & Kaufman, L. The moon illusion. Part II. Science 136, 1023–1031 (1962).

    Article  CAS  Google Scholar 

  37. Sedgwick, H. A. in Handbook of Perception and Human Performance (eds. Boff, K. R., Kaufman, L. & Thomas, J. P.) 21.21–21.57 (Wiley, New York, 1986).

    Google Scholar 

  38. Sabine, W. C. Collected Papers on Acoustics (Dover, New York, 1964).

    Google Scholar 

  39. Møller, H., Sørensen, M. F., Hammershøi, D. & Jensen, C. B. Head-related transfer functions of human subjects. J. Audio Eng. Soc. 43, 300–321 (1995).

    Google Scholar 

  40. Rife, D. D. & Vanderkooy, J. Transfer-function measurement with maximum-length sequences. J. Audio Eng. Soc. 37, 419–444 (1989).

    Google Scholar 

  41. Carlson, V. R. in Stability and Constancy in Visual Perception: Mechanisms and Processes (ed. Epstein, W.) 217–254 (Wiley, New York, 1977).

    Google Scholar 

  42. ISO 226. Acoustics—Normal Equal-Loudness Contours (International Organization for Standardization, Geneva, 1987).

Download references

Acknowledgements

Financial support for this work was provided by the NIH-NIDCD (DC00116), NIH-NEI (1F32EY07010-01), and NASA (Cooperative Agreement #NCC2-542). The authors wish to thank J. Loomis for discussions on perceptual constancy and comments on this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Zahorik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zahorik, P., Wightman, F. Loudness constancy with varying sound source distance. Nat Neurosci 4, 78–83 (2001). https://doi.org/10.1038/82931

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/82931

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing