Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The complete family of genes encoding G proteins of Caenorhabditis elegans

Abstract

Caenorhabditis elegans is the first animal whose genomic sequence has been determined1. One of the new possibilities in post-sequence genetics is the analysis of complete gene families at once. We studied the family of heterotrimeric G proteins2. C. elegans has 20 Gα, 2 Gβ and 2 Gγ genes. There is 1 homologue of each of the 4 mammalian classes of Gα genes, Gi/Goα, Gsα, Gqα and G12α, and there are 16 new α genes. Although the conserved Gα subunits are expressed in many neurons and muscle cells3,4,5,6,7, GFP fusions indicate that 14 new Gα genes are expressed almost exclusively in a small subset of the chemosensory neurons of C. elegans8,9. We generated loss-of-function alleles using target-selected gene inactivation10,11. None of the amphid-expressed genes are essential for viability, and only four show any detectable phenotype (chemotaxis defects), suggesting extensive functional redundancy. On the basis of functional analysis, the 20 genes encoding Gα proteins can be divided into two groups: those that encode subunits affecting muscle activity (homologues of Gi/Goα, Gsα and Gq; refs 3,4,5,6), and those (14 new genes) that encode proteins most likely involved in perception.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: C.elegans G protein genes.
Figure 2: Many Gα subunits are almost exclusively expressed in chemosensory neurons.
Figure 3: Mutated alleles cause chemotaxis defects.

Similar content being viewed by others

References

  1. The C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018 (1998).

  2. Neer, E.J. Heterotrimeric G proteins: organizers of transmembrane signals. Cell 80, 249–257 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  3. Mendel, J.E. et al. Participation of the Go protein in multiple aspects of behavior in C. elegans. Science 267, 1652–1655 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Ségalat, L., Elkes, D.A. & Kaplan, J.M. Modulation of serotonin controlled behaviors by G o in Caenorhabditis elegans. Science 267 , 1648–1651 (1995).

    Article  PubMed  Google Scholar 

  5. Brundage, L. et al. Mutations in a C. elegans Gqα gene disrupt movement, egg-laying and viability. Neuron 16, 999–1009 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Korswagen, H.C., Park, J-H., Ohshima, Y. & Plasterk, R.H.A. An activating mutation in a Caenorhabditis elegans Gs protein induces neuronal degeneration. Genes Dev. 11, 1493 –1503 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Park, J-H., Ohshima, S., Tani, T. & Ohshima, Y. Structure and expression of the gsa-1 gene encoding a G protein α (s) subunit in C. elegans. Gene 194, 183– 190 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Zwaal, R.R., Mendel, J.E., Sternberg, P.W. & Plasterk, R.H.A. Two neuronal G proteins are involved in the chemosensation of dauer inducing pheromone by C. elegans. Genetics 145, 715–727 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Roayaie, K., Gage Crump, J., Sagasti, A. & Bargmann, C.I. The Gα protein ODR-3 mediates olfactory and nociceptive function and controls cilium morphogenesis in C. elegans olfactory neurons. Neuron 20, 55–67 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  10. Zwaal, R.R., Broeks, A., van Meurs, J., Groenen, J.T.M. & Plasterk, R.H.A. Target selected gene inactivation by using a frozen transposon insertion mutant bank. Proc. Natl Acad. Sci. USA 90, 7431–7435 ( 1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jansen, G., Hazendonk, E., Thijssen, K.L. & Plasterk, R.H.A. Reverse genetics by chemical mutagenesis in Caenorhabditis elegans. Nature Genet. 17, 119– 121 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Lochrie, M.A., Mendel, J.E., Sternberg, P.W. & Simon, M.I. Homologous and unique G protein α subunits in the nematode Caenorhabditis elegans. Cell Regul. 2, 135– 154 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zwaal, R.R. et al. G proteins are required for spatial orientation of early cell cleavage in C. elegans embryos. Cell 86 , 619–629 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Bargmann, C.I. & Mori, I. Chemotaxis and thermotaxis. in C. elegans II (eds Riddle, D.L., Blumenthal, T., Meyer, B.J. & Priess, J.R.) 717–737 (Cold Spring Harbor Press, New York, 1997).

    Google Scholar 

  15. White, J.G., Southgate, E., Thomson, J.N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans . Philos. Trans. R. Soc. Lond. 314, 1–340 (1986).

    Article  CAS  Google Scholar 

  16. Perkins, L.A., Hedgecock, E.M., Thomson, J.N. & Culotti, J.G. Mutant sensory cilia in the nematode Caenorhabditis elegans. Dev. Biol. 117, 456–487 (1986).

    Article  CAS  PubMed  Google Scholar 

  17. Ward, S. Chemotaxis by the nematode Caenorhabditis elegans: identification of attractants and analysis of the response by use of mutants. Proc. Natl Acad. Sci. USA 70, 817–821 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Culotti, J.G. & Russell, R.L. Osmotic avoidance defective mutants of the nematode Caenorhabditis elegans. Genetics 90, 243–256 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bargmann, C.I., Hartwieg, E. & Horvitz, H.R. Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74, 515– 527 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Sengupta, P., Chou, J.H. & Bargmann, C.I. odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell 84, 899–909 ( 1994).

    Article  Google Scholar 

  21. Troemel, E.R., Kimmel, B.E. & Bargmann, C.I. Reprogramming chemotaxis responses: sensory neurons define olfactory preferences in C. elegans. Cell 91, 161–169 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Buck, L.B. Information coding in the vertebrate olfactory system. Annu. Rev. Neurosci. 19, 517–544 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  23. Kaplan, J.M. & Horvitz, H.R. A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 90, 2227–2231 ( 1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Colbert, H.A. & Bargmann, C.I. Odorant-specific adaptation pathways generate olfactory plasticity in C. elegans. Neuron 14, 803–812 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Troemel, E.R., Chou, J.H., Dwyer, N.D., Colbert, H.A. & Bargmann, C.I. Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans. Cell 83 , 207–218 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Yu, S., Avery, L., Baude, E. & Garbers, D.L. Gyanylyl cyclase expression in specific sensory neurons: a new family of chemosensory receptors. Proc. Natl Acad. Sci. USA 94, 3384– 3387 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 ( 1990).

    Article  CAS  PubMed  Google Scholar 

  28. Eeckman, F.H. & Durbin, R. ACeDB and Macace. Methods Cell Biol. 48, 583–605 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  29. Han, M. & Sternberg, P.W. Analysis of dominant negative mutations of the Caenorhabditis elegans let-60 ras gene. Genes Dev. 5, 2188–2198 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Bargmann, C.I. & Horvitz, H.R. Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 7, 729– 742 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Bargmann for strains and help in identification of amphid neurons; L. Brundage and M. Simon for the communication of unpublished results; A. Coulson for cosmids; the Fire lab for GFP-expression vectors; R. Zwaal, J. Neels, R. Korswagen and Y. Kato for the isolation of mutant strains; C. de Vries for help with behavioural assays; S. Wicks for help with statistical analyses and behavioural assays; and C. van den Berg, P. Borst, R. Korswagen and S. Wicks for comments on the manuscript. This work was supported by grant NKI 94-809 from the Netherlands Cancer Foundation, by grant NWO-GMW 90104094 from the Netherlands Organization for Scientific Research, by grant 940-70-008 from the New Drugs Research Foundation to R.H.A.P., and by a Biotechnology Research Training Grant from the European Commission (BIO4CT965072) to P.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald H A Plasterk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansen, G., Thijssen, K., Werner, P. et al. The complete family of genes encoding G proteins of Caenorhabditis elegans. Nat Genet 21, 414–419 (1999). https://doi.org/10.1038/7753

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/7753

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing