Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dynamic organization of motor control within the olivocerebellar system

Abstract

WHAT is the role of the cerebellum in motor coordination? Such coordination depends upon the integrity of the inferior olive, a major cerebellar afferent, as its lesion produces ataxic and dys-metric movement abnormalities1–2. Using multiple-microelectrode recordings, we report here that there are domains of Purkinje cell activity that are generated by olivary input during skilled tongue movements in rats. Such activity domains are highly rhythmic and time-locked to movement. Patterns of synchronous olivocerebellar activity are geometrically complex and can change during a sequence of movements. The results support the view that the inferior olive organizes movement in time, by entraining motor-neuronal firing through rhythmic activation of the cerebellum, and in space, by synchronously activating cell ensembles that allow the use of individual muscles. Dynamic repatterning of olivocerebellar synchrony may allow different combinations of muscles to be used for movements intended to have varying spatial structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wilson, W. C. & Magoun, H. W. J. comp. Neurol. 83, 69–77 (1945).

    Article  Google Scholar 

  2. Murphy, M. G. & O'Leary, J. L. Arch. Neurol. 24, 145–157 (1971).

    Article  CAS  Google Scholar 

  3. Eccles, J. C., Llinás, R. & Sasaki, K. J. Physiol., Lond. 182, 268–296 (1966).

    Article  CAS  Google Scholar 

  4. Desclin, J. C. Brain Res. 77, 365–384 (1974).

    Article  CAS  Google Scholar 

  5. Sasaki, K., Bower, J. M. & Llinás, R. Eur. J. Neurosci. 1, 572–586 (1989).

    Article  Google Scholar 

  6. Llinás, R. & Sasaki, K. Eur. J. Neurosci. 1, 587–602 (1989).

    Article  Google Scholar 

  7. Sugihara, I., Lang, E. J. & Llinás, R. J. Physiol., Lond. 470, 243–271 (1993).

    Article  CAS  Google Scholar 

  8. Keehn, J. D. & Arnold, E. M. M. Science 132, 739–741 (1960).

    Article  ADS  CAS  Google Scholar 

  9. Brooks, V. B. & Thach, W. T. in Motor Control Vol. 2 Handbook of Physiology 877–946 (American Physiological Society, Maryland, 1981).

    Google Scholar 

  10. Box, G. E. P., Jenkins, G. M. & Reinsel, G. C. Time Series Analysis 3rd edn (Prentice Hall, New Jersey, 1994).

    MATH  Google Scholar 

  11. Gerstein, G. L. & Kiang, W. Y. Biophys. J. 1, 15–28 (1960).

    Article  CAS  Google Scholar 

  12. Winer, B. J. Statistical Principles in Experimental Design (McGraw-Hill, New York, 1971).

    Google Scholar 

  13. Ziegler, H. P. in Thirst: Physiological and Psychological Aspects 241–257 (Springer, New York, 1991).

    Book  Google Scholar 

  14. Llinás, R. & Yarom, Y. J. Physiol., Lond. 315, 549–567 (1981).

    Article  Google Scholar 

  15. Llinás, R. & Yarom, Y. J. Physiol., Lond. 376, 163–182 (1986).

    Article  Google Scholar 

  16. Sotelo, C., Llinás, R. & Baker, R. J. Neurophysiol. 37, 541–559 (1974).

    Article  CAS  Google Scholar 

  17. King, J. S. J. comp. Neurol. 165, 387–400 (1976).

    Article  CAS  Google Scholar 

  18. Vallbo, A. B. & Wessberg, J. J. Physiol., Lond. 469, 673–691 (1993).

    Article  CAS  Google Scholar 

  19. Llinás, R. in Motor Control: Concepts and Issues (eds Humphrey, D. R. & Freund, H.-J.) 223–242 (Wiley, New York, 1991).

    Google Scholar 

  20. Cicerata, F., Anguat, P., Serapide, M. F., Panto, M. R. & Nicotra, G. Expl Brain Res. 89, 352–362 (1992).

    Google Scholar 

  21. Buisseret-Delmas, C. & Angaut, P. Prog. Neurobiol. 40, 63–87 (1993).

    Article  CAS  Google Scholar 

  22. Lang, E. J., Sugihara, I. & Llinás, R. Soc. Neurosci. Abstr. 16, 894 (1990).

    Google Scholar 

  23. Sotelo, C., Gotow, T. & Wassef, M. J. comp. Neurol. 252, 32–50 (1986).

    Article  CAS  Google Scholar 

  24. De Zeeuw, C. I., Holstege, J. C., Ruigrok, T. J. H. & Voogd, J. J. comp. Neurol. 284, 12–35 (1989).

    Article  CAS  Google Scholar 

  25. Larsell, O. The Comparative Anatomy and Histology of the Cerebellum from Monotremes through Apes (ed. Jansen, J.) (Univ. of Minnesota Press, Minneapolis, 1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welsh, J., Lang, E., Suglhara, I. et al. Dynamic organization of motor control within the olivocerebellar system. Nature 374, 453–457 (1995). https://doi.org/10.1038/374453a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/374453a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing