Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nitric oxide mediates network oscillations of olfactory interneurons in a terrestrial mollusc

Abstract

THE interneuronal messenger nitric oxide1,2 (NO) may play a cen-tral role in the processing of olfactory information3. Several circuit elements in the mammalian olfactory bulb contain NO synthase4 or its functional equivalent, NADPH diaphorase5–7. The effects of NO on cellular excitability or circuit dynamics in the olfactory bulb are unknown, although NO effects on other rhythmic cells8 and circuits9 have been described. I have studied the role of NO in central olfactory processing using the procerebral (PC) lobe, the major central site of odour processing in terrestrial molluscs10,11. As in the mammalian olfactory bulb during odour stimulation, the basic dynamics of electrical activity in the molluscan PC lobe is an oscillation12–14. Here I report an obligatory role for NO in the oscillatory dynamics of the PC lobe of Limax maximus. Nitric oxide mediation of the olfactory oscillation may relate to the highly developed odour sensitivity and odour-learning ability of Limax15,16.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Garthwaite, J., Charles, S. L. & Chess-Williams, R. Nature 336, 385–388 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Bredt, D. S. & Snyder, S. H. Neuron 8, 3–11 (1992).

    Article  CAS  Google Scholar 

  3. Breer, H. & Shepherd, G. M. Trends Neurosci. 16, 5–9 (1993).

    Article  CAS  Google Scholar 

  4. Bredt, D. S. et al. Nature 351, 714–718 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Croul-Ottmann, E. E. & Brunjes, P. C. Brain. Res. 460, 323–328 (1988).

    Article  Google Scholar 

  6. Davis, B. J. J. comp. Neurol. 314, 493–511 (1991).

    Article  CAS  Google Scholar 

  7. Vincent, S. R. & Kimura, H. Neuroscience 46, 755–784 (1992).

    Article  CAS  Google Scholar 

  8. Pape, H.-C. & Mager, R. Neuron 9, 441–448 (1992).

    Article  CAS  Google Scholar 

  9. Moroz, L. L., Park, J.-H. & Winlow, W. NeuroReport 4, 643–646 (1993).

    Article  CAS  Google Scholar 

  10. Chase, R. & Tolloczko, B. J. Electron Micr. Techn. 24, 214–230 (1993).

    CAS  Google Scholar 

  11. Ache, B. W. in Smell and Taste in Health and Disease (eds Getchell, T. V., Doty, R. L., Bartoshuk, L. M. & Snow, J. B.) 3–18 (Raven, New York, 1991).

    Google Scholar 

  12. Gelperin, A. & Tank, D. W. Nature 345, 437–440 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Gelperin, A., Rhines, L., Flores, J. & Tank, D. W. J. Neurophysiol. 69, 1930–1939 (1993).

    Article  CAS  Google Scholar 

  14. Delaney, K. R. et al. Proc. natn. Acad. Sci. U.S.A. 91, 669–673 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Gelperin, A in Perspectives in Neural Systems and Behavior (eds Carew, T. & Kelley, D.) 121–136 (Liss, New York, 1989).

    Google Scholar 

  16. Sahley, C. L. in Connectionist Modeling and Brain Function: The Developing Interface (eds Hanson, S. & Olson, C.) 36–73 (MIT Press, Cambridge, MA, 1990).

    Google Scholar 

  17. Rhines, L., Sokolove, P., Flores, J., Tank, D. W. & Gelperin, A. J. Neurophysiol. 69, 1940–1947 (1993).

    Article  CAS  Google Scholar 

  18. Cooke, I. R. C., Edwards, S. L. & Anderson, C. R. Cell Tiss. Res. (in the press).

  19. Elofsson, R., Carlberg, M., Moroz, L., Nezlin, L. & Sakharov, D. NeuroReport 4, 279–282 (1993).

    Article  CAS  Google Scholar 

  20. Buxton, I. L. O. et al. Circ. Res. 72, 387–395 (1993).

    Article  CAS  Google Scholar 

  21. Wink, D. A. et al. Science 254, 1001–1003 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Hrabie, J. A., Klose, J. R., Wink, D. A. & Keefer, L. K. J. org. Chem. 58, 1472–1476 (1993).

    Article  CAS  Google Scholar 

  23. Wink, D. A. et al. Proc. natn. Acad. Sci. U.S.A. 90, 9813–9817 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Maragos, C. M. et al. J. med Chem. 34, 3242–3247 (1991).

    Article  CAS  Google Scholar 

  25. Carter, T. D., Bettache, N., Ogden, D. & Trentham, D. R. J. Physiol. 467, 165P (1993).

    Google Scholar 

  26. Nikol'skii, A. B., Popov, A.M. & Vasilevskii, I. V. Soviet J. Coord. Chem. 2, 508–513 (1976).

    Google Scholar 

  27. Chase, R. & Tolloczko, B. J. comp. Neurol. 283, 143–152 (1989).

    Article  CAS  Google Scholar 

  28. Horn, R. & Marty, A. J. gen. Physiol. 92, 145–159 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gelperin, A. Nitric oxide mediates network oscillations of olfactory interneurons in a terrestrial mollusc. Nature 369, 61–63 (1994). https://doi.org/10.1038/369061a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369061a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing