Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Impaired odour discrimination on desynchronization of odour-encoding neural assemblies

Abstract

Stimulus-evoked oscillatory synchronization of neural assemblies has been described in the olfactory1,2,3,4,5 and visual6,7,8 systems of several vertebrates and invertebrates. In locusts, information about odour identity is contained in the timing of action potentials in an oscillatory population response9,10,11, suggesting that oscillations may reflect a common reference for messages encoded in time. Although the stimulus-evoked oscillatory phenomenon is reliable, its roles in sensation, perception, memory formation and pattern recognition remain to be demonstrated — a task requiring a behavioural paradigm. Using honeybees, we now demonstrate that odour encoding involves, as it does in locusts, the oscillatory synchronization of assemblies of projection neurons and that this synchronization is also selectively abolished by picrotoxin, an antagonist of the GABAA (γ-aminobutyric acid) receptor. By using a behavioural learning paradigm, we show that picrotoxin-induced desynchronization impairs the discrimination of molecularly similar odorants, but not that of dissimilar odorants. It appears, therefore, that oscillatory synchronization of neuronal assemblies is functionally relevant, and essential for fine sensory discrimination. This suggests that oscillatory synchronization and the kind of temporal encoding it affords provide an additional dimension by which the brain could segment spatially overlapping stimulus representations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Odours elicit 30-Hz synchronous oscillatory activity in the local field potential (LFP) recorded in the calyx of the mushroom bodies and in antennal lobeneurons.
Figure 3: Many AL neurons display odour-specific temporal response patterns.
Figure 2: Picrotoxin abolishes the odour-elicited 30-Hz oscillations recorded in the LFP.
Figure 4: Application of picrotoxin, but not saline, to the antennal lobes impairs discrimination of structurally similar simple odours but not of dissimilar ones.

Similar content being viewed by others

References

  1. Adrian, E. D. Olfactory reactions in the brain of the hedgehog. J. Physiol. (Lond.) 100, 459–473 ( 1942).

    Article  CAS  Google Scholar 

  2. Gray, C. M. & Skinner, J. E. Centrifugal regulation of neuronal activity in the olfactory bulb of the waking rabbit as revealed by reversible cryogenic blockade. Exp. Brain Res. 69, 378–386 (1988).

    Article  CAS  Google Scholar 

  3. Gelperin, A. & Tank, D. W. Odour-modulated collective network oscillations of olfactory interneurons in a terrestrial mollusc. Nature 345, 437–440 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Delaney, K. R. et al . Waves and stimulus-modulated dynamics in an oscillating olfactory network. Proc. Natl Acad. Sci. USA 91, 669–674 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Laurent, G. & Davidowitz, H. Encoding of olfactory information with oscillating neural assemblies. Science 265, 1872–1875 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Gray, C. M. & Singer, W. Stimulus specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl Acad. Sci. USA 86, 1698–1702 ( 1989).

    Article  ADS  CAS  Google Scholar 

  7. Singer, W. & Gray, C. M. Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555–586 (1995).

    Article  CAS  Google Scholar 

  8. Neuenschwander, S. & Varela, F. J. Visually triggered neuronal oscillations in the pigeon — an autocorrelation study of tectal activity. Eur. J. Neurosci. 7, 870–881 (1993).

    Article  Google Scholar 

  9. Laurent, G., Wehr, M. & Davidowitz, H. Temporal representations of odors in an olfactory network. J. Neurosci. 16, 3837– 3847 (1996).

    Article  CAS  Google Scholar 

  10. Wehr, M. & Laurent, G. Temporal combinatorial encoding of odours with oscillations. Nature 384, 162–166 (1996).<!--384162a0-->

    Article  ADS  CAS  Google Scholar 

  11. Laurent, G. Dynamical representation of odors by oscillating and evolving neural assemblies. Trends Neurosci. 19, 489– 496 (1996).

    Article  CAS  Google Scholar 

  12. MacLeod, K. & Laurent, G. Distinct mechanisms for synchronization and temporal patterning of odor-encoding neural assemblies. Science 274, 976–979 ( 1996).

    Article  ADS  CAS  Google Scholar 

  13. Kuwabara, M. Bildung des bedingten reflexes von pavlovs typus bei der honigbiene, Apis mellifica. J. Fac. Sci. Hokkaido Univ. (Ser. VI Zool.) 13, 458–464 (1957).

    Google Scholar 

  14. Bitterman, M. E., Menzel, R., Fietz, A. & Schäfer, S. Classical conditioning of proboscis extension in honeybees (Apis mellifera ). J. Comp. Psychol. 97, 107– 119 (1983).

    Article  CAS  Google Scholar 

  15. Menzel, R. & Bitterman, M. E. in Neuroethology and Behavioral Physiology (eds Huber, F. &Markl, H.) 206– 215 (Springer, New York, (1983)).

    Book  Google Scholar 

  16. Smith, B. H. & Menzel, R. The use of electromyogram recordings to quantify odorant discrimination in the honey bee, Apis mellifera. J. Insect Physiol. 35, 369– 375 (1989).

    Article  CAS  Google Scholar 

  17. Menzel, R. in Neurobiology of Comparative Cognition (eds Kesner, R. P. &Olton, D. S.) 237–292 (Erlbaum, New Jersey, (1990)).

    Google Scholar 

  18. Menzel, R., Michelson, B., Rüffer, P. & Sugawa, M. in Modulation of Synaptic Plasticity in Nervous Systems NATO ASI series, Vol. H19(eds Hertung, G. &Spatz, H.-C.) 335– 350 (Springer, Berlin, (1988)).

    Google Scholar 

  19. Yokoi, M., Mori, K. & Nakanishi, S. Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. Proc. Natl Acad. Sci. USA 92, 3371–3375 ( 1995).

    Article  ADS  CAS  Google Scholar 

  20. Joerges, J., Kuttner, A., Galizia, C. G. & Menzel, R. Representation of odours and odour mixtures visualized in the honeybee brain. Nature 387, 285–288 (1997).<!--387285a0-->

    Article  ADS  CAS  Google Scholar 

  21. Murthy, V. N. & Fetz, E. E. Coherent 25 Hz to 35 Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proc. Natl Acad. Sci. USA 89, 5670– 5674 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Gray, C. M. Synchronous oscillations in neuronal systems: mechanisms and functions. J. Comput. Neurosci. 1, 11–38 (1994).

    Article  CAS  Google Scholar 

  23. Mauelshagen, J. Neural correlates of olfactory learning-paradigms in an identified neuron in the honeybee brain. J. Neurophysiol. 69, 609–625 (1993).

    Article  CAS  Google Scholar 

  24. Bhagavan, S. & Smith, B. H. Olfactory conditioning in the honey-bee, Apis mellifera –effects of odor intensity. Physiol. Behav. 61, 107–117 ( 1997).

    Article  CAS  Google Scholar 

  25. Smith, B. H. An analysis of blocking in binary odorant mixtures: An increase but not a decrease in intensity of reinforcement produces unblocking. Behav. Neurosci. 111, 57–69 (1997).

    Article  CAS  Google Scholar 

  26. Macmillan, C. S. & Mercer, A. R. An investigation of the role of dopamine in the antennal lobes of the honeybee, Apis mellifera . J. Comp. Physiol. A 160, 359– 366 (1987).

    Article  Google Scholar 

Download references

Acknowledgements

We thank K. MacLeod, L. Kay, M. Wehr, A. Hershowitz and H. Krapp for their helpful comments. Supported by an NRSA (NIDCD) fellowship (M.S.), +an NIMH grant (B.H.S.), an NSF grant, an NSF Presidential Faculty Fellow award, and a grant from the Sloan Center for Theoretical Neuroscience at Caltech (G.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Laurent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stopfer, M., Bhagavan, S., Smith, B. et al. Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature 390, 70–74 (1997). https://doi.org/10.1038/36335

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/36335

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing