Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

ATP receptor-mediated synaptic currents in the central nervous system

Abstract

UNTIL now, the only well documented, fast excitatory neurotrans-mitter in the brain has been glutamate. Although there is evidence for adenosine 5′-triphosphate (ATP) acting as a transmitter in the peripheral nervous system1–4, suggestions for such a role in the central nervous system1,5–11 have so far not been supported by any direct evidence. Here we report the recording of evoked and miniature synaptic currents in the rat medial habenula. The fast rise time of the currents showed that they were mediated by a ligand-activated ion channel rather than a second messenger system, thus limiting the known transmitter candidates. Evidence was found for the presence on the cells of glutamate, γ-aminobutyric acid, acetylcholine and ATP receptors, but not for 5-hydroxytryptamine (5HT3) or glycine receptors. The evoked currents were unaffected by blockers of glutamate, γ-aminobutyric acid or acetylcholine receptors but were blocked by the ATP receptor-blocker, suramin and the desensitizing ATP receptor-agonist α,β-methylene-ATP. Our evidence identifies for the first time synaptic currents in the brain, mediated directly by ATP receptors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hoyle, C. H. V. & Burnstock, G. in Adenosine in the Nervous System (ed. Stone, T. W.) Chapter 3 (Academic, London, 1991).

    Google Scholar 

  2. Bean, B. Trends Pharmac. Sci. 13, 87–90 (1992).

    Article  CAS  Google Scholar 

  3. Silinsky, E. M., Gerzanich, V. & Vanner, S. M. Br. J. Pharmac. 106, 762–763 (1992).

    Article  CAS  Google Scholar 

  4. Evans, R. J., Derkach, V. & Surprenant, A. Nature 357, 503–505 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Phillips, J. W., Kostopoulos, G. K. & Limacher, J. J. Can. J. Physiol. 52, 1226–1229 (1974).

    Article  Google Scholar 

  6. Fyffe, R. E. W. & Perl, E. R. Proc. natn. Acad. Sci. U.S.A. 81, 6890–6893 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Salter, M. W. & Henry, J. L. Neuroscience 15, 815–825 (1985).

    Article  CAS  Google Scholar 

  8. Jahr, C. E. & Jessel, T. M. Nature 304, 730–733 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Tschöpl, M., Harms, L., Nörenberg, W. & Illes, P. Eur. J. Pharm. 213, 71–77 (1992).

    Article  Google Scholar 

  10. Wierasko, A. & Seyfried, T. N. Brain Res. 491, 356–359 (1989).

    Article  Google Scholar 

  11. Inoue, K., Nakazawa, K., Fujimori, K., Wotano, T. & Takanaka, A. Neurosci. Lett. 134, 215–218 (1992).

    Article  CAS  Google Scholar 

  12. Schubert, P. & Kreutzberg, G. W. Brain Res. 168, 419–424 (1979).

    Article  CAS  Google Scholar 

  13. Nakazawa, K., Fujimori, K., Takanaka, A. & Inoue, K. J. Physiol. 434, 647–660 (1991).

    Article  CAS  Google Scholar 

  14. Burnstock, G. & Kennedy, C. Gen. Pharm. 16, 433–440 (1985).

    Article  CAS  Google Scholar 

  15. White, T. D. J. Neurochem. 30, 329–336 (1976).

    Article  Google Scholar 

  16. Potter, P. & White, T. D. Neuroscience 5, 1351–1356 (1980).

    Article  CAS  Google Scholar 

  17. Richardson, P. J. & Brown, S. J. Biochem. Soc. Trans. 14, 1250–1251 (1986).

    Article  CAS  Google Scholar 

  18. Wierasko, A., Goldsmith, G. & Seyfried, T. N. Brain Res. 485, 244–250 (1989).

    Article  Google Scholar 

  19. Krishtal, O. A., Marchenko, S. M. & Obukhov, A. G. Neuroscience 27, 995–1000 (1988).

    Article  CAS  Google Scholar 

  20. Neuhaus, R., Reber, B. F. X. & Reuter, H. J. Neurosci. 11, 3984–3990 (1991).

    Article  CAS  Google Scholar 

  21. Fieber, L. A. & Adams, D. J. J. Physiol. 434, 239–256 (1991).

    Article  CAS  Google Scholar 

  22. Tokunaga, A. & Otani, K. Brain Res. 150, 600–606 (1978).

    Article  CAS  Google Scholar 

  23. Williams, M. in Psychopharmacology: The Third Generation of Progress Chapter 30 (ed. Meltzer, H. Y.) (Raven Press, New York, 1987).

    Google Scholar 

  24. Edwards, F. A., Konnerth, A., Sakmann, B. & Takahashi, T. Pflügers Arch. 414, 600–612 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, F., Gibb, A. & Colquhoun, D. ATP receptor-mediated synaptic currents in the central nervous system. Nature 359, 144–147 (1992). https://doi.org/10.1038/359144a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/359144a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing