Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coordination of microtubules and the actin cytoskeleton by the Rho effector mDia1

Abstract

Coordination of microtubules and the actin cytoskeleton is important in several types of cell movement. mDia1 is a member of the formin-homology family of proteins and an effector of the small GTPase Rho. It contains the Rho-binding domain in its amino terminus and two distinct regions of formin homology, FH1 in the middle and FH2 in the carboxy terminus. Here we show that expression of mDia1(ΔN3), an active mDia1 mutant containing the FH1 and FH2 regions without the Rho-binding domain, induces bipolar elongation of HeLa cells and aligns microtubules in parallel to F-actin bundles along the long axis of the cell. The cell elongation and microtubule alignment caused by this mutant is abolished by co-expression of an FH2-region fragment, and expression of mDia1(ΔN3) containing point mutations in the FH2 region causes an increase in the amount of disorganized F-actin without cell elongation and microtubule alignment. These results indicate that mDia1 may coordinate microtubules and F-actin through its FH2 and FH1 regions, respectively.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Elongation of HeLa cells expressing an active form of mDia1.
Figure 2: Microtubule alignment in HeLa cells expressing mDia1(ΔN3).
Figure 3: Effects of cytochalasin D and nocodazole on the shape, actin cytoskeleton and microtubules of cells expressing mDia1(ΔN3).
Figure 4: Distribution of GFP–mDia1(ΔN3), microtubules, actin bundles and focal adhesions in cells expressing mDia1(ΔN3).
Figure 5: Suppression of mDia1(ΔN3)-induced cell elongation by co-expression with mDia1(F2).
Figure 6: mDia1(ΔN3 KA3) induces disorganized F-actin without microtubule alignment and cell elongation.

Similar content being viewed by others

References

  1. Lauffenburger, D. A. & Horwitz, A. F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996).

    Article  CAS  Google Scholar 

  2. Mitchison, T. J. & Cramer, L. P. Actin-based cell motility and cell locomotion. Cell 84, 371–379 (1996).

    Article  CAS  Google Scholar 

  3. Vasiliev, J. M. Polarization of pseudopodial activities: cytoskeletal mechanisms. J. Cell Sci. 98, 1–4 ( 1991).

    PubMed  Google Scholar 

  4. Nobes, C. D. & Hall, A. Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81 , 53–62 (1995).

    Article  CAS  Google Scholar 

  5. Kozma, R., Ahmed, S., Best, A. & Lim, L. The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol. Cell. Biol. 15, 1942–1952 (1995).

    Article  CAS  Google Scholar 

  6. Ridley, A. J. et al. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 401– 410 (1992).

    Article  CAS  Google Scholar 

  7. Machesky, L. M. & Insall, R. H. Scar1 and the related Wiskott–Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr. Biol. 8, 1347–1356 (1998).

    Article  CAS  Google Scholar 

  8. Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221–231 (1999).

    Article  CAS  Google Scholar 

  9. Ridley, A. J. & Hall, A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389–399 (1992).

    Article  CAS  Google Scholar 

  10. Leung, T., Manser, E., Tan, L. & Lim, L. A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J. Biol. Chem. 270, 29051–29054 (1995).

    Article  CAS  Google Scholar 

  11. Ishizaki, T. et al. The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J. 15, 1885–1893 ( 1996).

    Article  CAS  Google Scholar 

  12. Matsui, T. et al. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J. 15, 2208–2216 (1996).

    Article  CAS  Google Scholar 

  13. Kimura, K. et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273, 245– 248 (1996).

    Article  CAS  Google Scholar 

  14. Burridge, K., Chrzanowaska-Wodnicka, M. & Zhong, C. Focal adhesion assembly. Trends Cell Biol. 7, 342–347 ( 1997).

    Article  CAS  Google Scholar 

  15. Watanabe, N. et al. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J. 16, 3044–3056 ( 1997).

    Article  CAS  Google Scholar 

  16. Watanabe, N. et al. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization . Nature Cell Biol. 1, 136– 143 (1999).

    Article  CAS  Google Scholar 

  17. Nobes C. D. & Hall, A. Rho GTPases control polarity, protrusion, and adhesion during cell movement. J. Cell Biol. 144, 1235–1244 (1999).

    Article  CAS  Google Scholar 

  18. Allen, W. E., Zicha, D., Ridley, A. J. & Jones, G. E. A role for Cdc42 in macrophage chemotaxis. J. Cell Biol. 141, 1147–1157 (1998).

    Article  CAS  Google Scholar 

  19. Uehata, M. et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389, 990–994 (1997).

    Article  CAS  Google Scholar 

  20. Niggli, V. Rho-kinase in human neutrophils: a role in signalling for myosin light chain phosphorylation and cell migration. FEBS Lett. 445, 69–72 (1999).

    Article  CAS  Google Scholar 

  21. Adams, A. E. et al. CDC42 and CDC43, two additional genes involved in budding and the establishment of cell polarity in the yeast Saccharomyces cerevisiae . J. Cell Biol. 111, 131– 142 (1990).

    Article  CAS  Google Scholar 

  22. Drgonova, J., Drgon, T., Roh, D-H. & Cabib, E. The GTP-binding protein Rho1p is required for cell cycle progression and polarization of the yeast cell. J. Cell Biol. 146, 373– 387 (1999).

    Article  CAS  Google Scholar 

  23. Bershadsky, A. D. & Futerman, A. H. Disruption of the Golgi apparatus by brefeldin A blocks cell polarization and inhibits directed cell migration. Proc. Natl Acad. Sci. USA 91, 5686–5689 (1994).

    Article  CAS  Google Scholar 

  24. Evangelista, M. et al. Bni1p, a yeast formin linking Cdc42p and the actin cytoskeleton during polarized morphogenesis. Science 276, 118–122 (1997).

    Article  CAS  Google Scholar 

  25. Tanaka, K. & Takai, Y. Control of reorganization of the actin cytoskeleton by Rho family small GTP-binding proteins in yeast . Curr. Opin. Cell Biol. 10, 112– 116 (1998).

    Article  CAS  Google Scholar 

  26. Lee, L. et al. Control of mitotic spindle position by the Saccharomyces cerevisiae formin Bni1p. J. Cell Biol. 144, 947 –961 (1999).

    Article  CAS  Google Scholar 

  27. Miller, R. K., Matheos, D. & Rose, M. D. The cortical localization of the microtubule orientation protein, Kar9p, is dependent upon actin and proteins required for polarization. J. Cell Biol. 144, 963 –975 (1999).

    Article  CAS  Google Scholar 

  28. Enomoto, T. Microtubule disruption induces the formation of actin stress fibers and focal adhesions in cultured cells: possible involvement of the Rho signal cascade . Cell Struct. Funct. 21, 317– 326 (1996).

    Article  CAS  Google Scholar 

  29. Zhang, Q., Magnusson, M. K. & Mosher, D. F. Lysophosphatidic acid and microtubule-destabilizing agents stimulate fibronectin matrix assembly through Rho-dependent actin stress fiber formation and cell contraction. Mol. Biol. Cell 8, 1415–1425 (1997).

    Article  CAS  Google Scholar 

  30. Kaverina, I., Rottner, K. & Small, J. V. Targeting, capture, and stabilization of microtubules at early focal adhesions. J. Cell Biol. 142, 181–190 (1998).

    Article  CAS  Google Scholar 

  31. Kaverina, I., Krylyshkina, O. & Small, J. V. Microtubule targeting of substrate contacts promotes their relaxation and dissociation. J. Cell Biol. 146 , 1033–1043 (1999).

    Article  CAS  Google Scholar 

  32. Sawin, K. E. & Nurse, P. Regulation of cell polarity by microtubules in fission yeast. J. Cell Biol. 142 , 457–471 (1998).

    Article  CAS  Google Scholar 

  33. Mata, J. & Nurse, P. Tea1 and the microtubular cytoskeleton are important for generating global spatial order within the fission yeast cell. Cell 89, 939– 949 (1997).

    Article  CAS  Google Scholar 

  34. Maekawa, M. et al. Signalling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285, 895–898 (1999).

    Article  CAS  Google Scholar 

  35. Wasserman, S. FH proteins as cytoskeletal organizers. Trends Cell Biol. 8, 111–115 (1998).

    Article  CAS  Google Scholar 

  36. Norman, J. C. et al. ARF1 mediates paxillin recruitment to focal adhesions and potentiates Rho-stimulated stress fiber formation in intact and permeabilized Swiss 3T3 fibroblasts. J. Cell Biol. 143, 1981–1995 (1998).

    Article  CAS  Google Scholar 

  37. Smilenov, L. B. et al. Focal adhesion motility revealed in stationary fibroblasts . Science 286, 1172–1174 (1999).

    Article  CAS  Google Scholar 

  38. Elbaum, M. et al. in Cell Behaviour: Control and Mechanism of Motility (eds Lackie, J. M., Dunn, G. A. & Jones, G. E.), 147– 172 (Portland, London, 1999).

    Google Scholar 

  39. Ishizaki, T. et al. p160ROCK, a Rho-associated coiled-coil forming protein kinase, works downstream of Rho and induces focal adhesions. FEBS Lett. 404, 118–124 ( 1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Watanabe for the pEGFP–mDia1ΔN3 construct and for his initial observation of microtubule alignment in mDia-expressing cells; H. Bito for advice on live-cell imaging; and A. Fujita, M. Maekawa and K. Kimura for discussions. This work was supported by a Grant in Aid for Specially Promoted Research from the Ministry of Education, Science, Sports and Culture of Japan, a grant from the Human Frontier Science Program (to S.N.), and grants from the Searle Foundation and the Japan Foundation for Applied Enzymology (to T.I.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuh Narumiya.

Supplementary information

Figure S1

Effect of BFA on the actin cytoskeleton and microtubules in cells expressing mDia1(ΔN3). (PDF 134 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishizaki, T., Morishima, Y., Okamoto, M. et al. Coordination of microtubules and the actin cytoskeleton by the Rho effector mDia1. Nat Cell Biol 3, 8–14 (2001). https://doi.org/10.1038/35050598

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35050598

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing