Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genetic and epigenetic mechanisms contribute to motor neuron pathfinding

Abstract

Many lines of evidence indicate that genetically distinct subtypes of motor neurons are specified during development1, with each type having characteristic properties of axon guidance and cell-body migration2. Motor neuron subtypes express unique combinations of LIM-type homeodomain factors that may act as intrinsic genetic regulators of the cytoskeletal events that mediate cell migration, axon navigation or both3,4,5,6,7. Although experimentally displaced motor neurons can pioneer new routes to their targets8,9,10,11, in many cases the axons of motor neurons in complete isolation from their normal territories passively follow stereotypical pathways dictated by the environment12,13,14,15,16. To investigate the nonspecific versus genetically controlled regulation of motor connectivity we forced all motor neurons to express ectopically a LIM gene combination appropriate for the subgroup that innervates axial muscles. Here we show that this genetic alteration is sufficient to convert the cell body settling pattern, gene-expression profile and axonal projections of all motor neurons to that of the axial subclass. Nevertheless, elevated occupancy of the axial pathway can override their genetic program, causing some axons to project to alternative targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary of thoracic motor columns.
Figure 2: Method for ectopic gene expression in embryonic motor neurons.
Figure 3: Ectopic Lhx3 induces MMCm markers in motor neurons.
Figure 4: Analysis of motor neuron settling patterns.
Figure 5: Orthograde fills reveal increased axial projections in TgH Lhx3 ON embryos.
Figure 6: MMCm cell number influences pathfinding.

Similar content being viewed by others

References

  1. Tanabe, Y. & Jessell, T. M. Diversity and pattern in the developing spinal cord. Science 274, 1115 –1122 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Landmesser, L. The development of motor projection patterns in the chick hind limb. J. Physiol. (Lond.) 284, 391–414 (1978).

    Article  CAS  Google Scholar 

  3. Tsuchida, T. et al. Topographic organization of embryonic motor neurons defined by expression of LIM homeobox genes. Cell 79, 957–970 (1994).

    Article  CAS  Google Scholar 

  4. Varela-Echavarria, A., Pfaff, S. L. & Guthrie, S. Differential expression of LIM homeobox genes among motor neuron subpopulations in the developing chick brain stem. Mol. Cell. Neurosci. 8, 242–257 (1996).

    Article  CAS  Google Scholar 

  5. Appel, B. et al. Motoneuron fate specification revealed by patterned LIM homeobox gene expression in embryonic zebrafish. Development 121, 4117–4125 (1995).

    Article  CAS  Google Scholar 

  6. Jurata, L. W., Thomas, J. B. & Pfaff, S. L. Transcriptional mechanisms in the development of motor control. Curr. Opin. Neurobiol. 10, 72–79 (2000).

    Article  CAS  Google Scholar 

  7. Pfaff, S. & Kintner, C. Neuronal diversification: development of motor neuron subtypes. Curr. Opin. Neurobiol. 8, 27–36 (1998).

    Article  CAS  Google Scholar 

  8. Bell, E., Wingate, R. J. & Lumsden, A. Homeotic transformation of rhombomere identity after localized Hoxb1 misexpression. Science 284, 2168–2171 (1999).

    Article  CAS  Google Scholar 

  9. Ferguson, B. A. Development of motor innervation of the chick following dorsal-ventral limb bud rotations. J. Neurosci. 3, 1760– 1772 (1983).

    Article  CAS  Google Scholar 

  10. Lance-Jones, C. & Landmesser, L. Motoneurone projection patterns in the chick hind limb following partial reversals of the spinal cord. J. Physiol. 302, 581– 602 (1980).

    Article  CAS  Google Scholar 

  11. Ferns, M. J. & Hollyday, M. Motor innervation of dorsoventrally reversed wings in chick/quail chimeric embryos. J. Neurosci. 13, 2463–2476 (1993).

    Article  CAS  Google Scholar 

  12. Summerbell, D. & Stirling, R. V. The innervation of dorsoventrally reversed chick wings: evidence that motor axons do not actively seek out their appropriate targets. J. Embryol. Exp. Morphol. 61, 233–247 (1981).

    CAS  PubMed  Google Scholar 

  13. Straznicky, C. The patterns of innervation and movements of ectopic hindlimb supplied by brachial spinal cord segments in the chick. Anat. Embryol. (Berl.) 167, 247–262 ( 1983).

    Article  CAS  Google Scholar 

  14. Lance-Jones, C. C. Motoneuron projection patterns in chick embryonic limbs with a double complement of dorsal thigh musculature. Dev. Biol. 116, 387–406 (1986).

    Article  CAS  Google Scholar 

  15. Whitelaw, V. & Hollyday, M. Position-dependent motor innervation of the chick hindlimb following serial and parallel duplications of limb segments. J. Neurosci. 3, 1216–1225 (1983).

    Article  CAS  Google Scholar 

  16. O'Brien, M. K., Landmesser, L. & Oppenheim, R. W. Development and survival of thoracic motoneurons and hindlimb musculature following transplantation of the thoracic neural tube to the lumbar region in the chick embryo: functional aspects. J. Neurobiol. 21, 341–355 (1990).

    Article  CAS  Google Scholar 

  17. Sharma, K. et al. LIM homeodomain factors Lhx3 and Lhx4 assign subtype identities for motor neurons. Cell 95, 817– 828 (1998).

    Article  CAS  Google Scholar 

  18. Arber, S. et al. Requirement for the homeobox gene Hb9 in the consolidation of motor neuron identity. Neuron 23, 659– 674 (1999).

    Article  CAS  Google Scholar 

  19. Thaler, J. et al. Active suppression of interneuron programs within developing motor neurons revealed by analysis of homeodomain factor HB9. Neuron 23, 675–687 ( 1999).

    Article  CAS  Google Scholar 

  20. O'Gorman, S., Dagenais, N. A., Qian, M. & Marchuk, Y. Protamine-Cre recombinase transgenes efficiently recombine target sequences in the male germ line of mice, but not in embryonic stem cells. Proc. Natl Acad. Sci. USA 94, 14602– 14607 (1997).

    Article  ADS  CAS  Google Scholar 

  21. Wetts, R. & Vaughn, J. E. Choline acetyltransferase and NADPH diaphorase are co-expressed in rat spinal cord neurons. Neuroscience 63, 1117–1124 (1994).

    Article  CAS  Google Scholar 

  22. Lin, J. H. et al. Functionally related motor neuron pool and muscle sensory afferent subtypes defined by coordinate ETS gene expression. Cell 95, 393–407 ( 1998).

    Article  CAS  Google Scholar 

  23. Lance-Jones, C. & Landmesser, L. Motoneurone projection patterns in embryonic chick limbs following partial deletions of the spinal cord. J. Physiol. (Lond.) 302, 559–580 (1980).

    Article  CAS  Google Scholar 

  24. Goodhill, G. J. & Richards, L. J. Retinotectal maps: molecules, models and misplaced data. Trends Neurosci. 22, 529–534 (1999).

    Article  CAS  Google Scholar 

  25. Thor, S., Andersson, S. G., Tomlinson, A. & Thomas, J. B. A LIM-homeodomain combinatorial code for motor-neuron pathway selection. Nature 397, 76–80 ( 1999).

    Article  ADS  CAS  Google Scholar 

  26. Friedrich, G. & Soriano, P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 5, 1513–1523 (1991).

    Article  CAS  Google Scholar 

  27. Pfaff, S. L., Mendelsohn, M., Stewart, C. L., Edlund, T. & Jessell, T. M. Requirement for LIM homeobox gene Isl1 in motor neuron generation reveals a motor neuron-dependent step in interneuron differentiation. Cell 84, 309–320 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Joyner and A. Auerbach for the training to generate chimaeric embryos; M. McLean for help with immunocytochemistry; S. O'Gorman for Cre mice and the lox–neo–lox cassette; B. Hogan for Lhx1; H. Westphal for Lhx3; L. Jurata, C. Lance-Jones, G. Lemke and J. Thomas; and J. Thaler for insightful comments on the manuscript. This work derives from initial studies on LIM genes while S.L.P. was a fellow with T. Jessell. The Human Frontiers Science Program provided postdoctoral support for K. S., and the National Institutes of Health provided training support for A.E.L. This research was funded by the National Institutes of Health. S.L.P. is a Basil O'Connor, McKnight, Pew, and Alfred P. Sloan Scholar.

Author information

Authors and Affiliations

Author notes

  1. Correspondence and requests for materials should be addressed to S.L.P..

    • Samuel L. Pfaff
Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, K., Leonard, A., Lettieri, K. et al. Genetic and epigenetic mechanisms contribute to motor neuron pathfinding . Nature 406, 515–519 (2000). https://doi.org/10.1038/35020078

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35020078

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing