Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Real-time optical imaging of naturally evoked electrical activity in intact frog brain

Abstract

A major obstacle to understanding the function and development of the vertebrate brain is the difficulty in monitoring dynamic patterns of electrical activity in the millesecond time domain; this has limited investigations of such phenomena as modular organization of functional units, seizure activities and spreading depression. The use of voltage-sensitive dyes1–6 and the recent development of the use of an array of photodiodes7 has provided a unique technique for monitoring the dynamic patterns of electrical activity in real time from a variety of invertebrate1,2,7 or vertebrate neuronal preparations8–10 including the rat cortex11. In the present study, this technique has been used to investigate the intact optic tectum of the frog. We demonstrate that optical measurements can be used for real-time imaging of spatio-temporal patterns of neuronal responses and for identification of functional units evoked by natural visual stimuli. We report also the structure of the new voltage-sensitive probe that facilitates the in vivo applications of this technique.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Salzberg, B. M., Cohen, L. B. & Davila, H. V. Nature 246, 508–509 (1973).

    Article  ADS  CAS  Google Scholar 

  2. Cohen, L. B., Salzberg, B. M. & Grinvald, A. A. Rev. Neurosci. 1, 171–181 (1978).

    Article  CAS  Google Scholar 

  3. Cohen, L. B. et al. J. Membrane Biol. 19, 1–36 (1974).

    Article  CAS  Google Scholar 

  4. Ross, W. N. et al. J. Membrane Biol. 33, 141–182 (1977).

    Article  CAS  Google Scholar 

  5. Gupta, R. et al. J. Membrane Biol. 58, 123–137 (1981).

    Article  CAS  Google Scholar 

  6. Grinvald, A., Hildesheim, R., Farber, I. C. & Anglister, L. Biophys. J. 39, 301–308 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Grinvald, A., Cohen, L. B., Lesher, S. & Boyle, M. B. J. Neurophysiol. 45, 829–840 (1981).

    Article  CAS  Google Scholar 

  8. Grinvald, A., Manker, A. & Segal, M. J. Physiol., Lond. 333, 269–291 (1982).

    Article  CAS  Google Scholar 

  9. Salzberg, B. M., Obaid, A. L., Senseman, D. M. & Gainer, H. Nature 306, 36–40 (1983).

    Article  ADS  CAS  Google Scholar 

  10. Orbach, H. S. & Cohen, L. B. J. Neurosci. 3, 2251–2262 (1983).

    Article  CAS  Google Scholar 

  11. Orbach, H. S., Cohen, L. B. & Grinvald, A. Biol. Bull. 163, 389 (1982).

    Google Scholar 

  12. Grinvald, A., Fine, A., Farber, I. C. & Hildesheim, R. Biophys. J. 42, 195–198 (1983).

    Article  CAS  Google Scholar 

  13. Maturana, H. R., Lettvin, J. Y., McCulloch, W. S. & Pitts, H. J. J. gen. Physiol. 43, 129–175 (1960).

    Article  Google Scholar 

  14. Chung, S. H., Bliss, T. V. P. & Keating, M. J. Proc. R. Soc. B187, 421–447 (1974).

    ADS  CAS  Google Scholar 

  15. Freeman, J. A., Schmidt, J. T. & Oswald, R. E. Neuroscience 5, 929–942 (1980).

    Article  CAS  Google Scholar 

  16. Salzberg, B. M., Grinvald, A., Cohen, L. B., Davila, H. V. & Ross, W. N. J. Neurophysiol. 40, 1281–1291 (1977).

    Article  CAS  Google Scholar 

  17. Grinvald, A. & Segal, M. in Brain Slices (ed. Dingledine, R.) (Plenum, New York, 1983).

    Google Scholar 

  18. Grinvald, A. Trends Neurosci. (in the press).

  19. Gaze, R. M. Q. Jl exp. Physiol. 43, 209–244 (1958).

    Article  CAS  Google Scholar 

  20. Szekely, G. & Lazar, G. in Frog Neurobiology (eds Llinas, R. & Precht, W.) 407–438 (Springer, Berlin, 1976).

    Book  Google Scholar 

  21. Potter, H. D. J. comp. Neurol. 144, 269–284 (1972).

    Article  CAS  Google Scholar 

  22. Matsumoto, N. & Bando, T. Brain Res. 192, 39–43 (1980).

    Article  CAS  Google Scholar 

  23. Freeman, J. A. & Norden, J. J. in Comparative Neurology of the Optic Tectum (ed. Vanegas, H.) (Plenum, New York, in the press).

  24. Sokolof, L. J. Neurochem. 19, 13–25 (1977).

    Article  Google Scholar 

  25. Orbach, H. S., Cohen, L. B., Grinvald, A. & Hildesheim, R. Neurosci. Abstr. 9, 39 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grinvald, A., Anglister, L., Freeman, J. et al. Real-time optical imaging of naturally evoked electrical activity in intact frog brain. Nature 308, 848–850 (1984). https://doi.org/10.1038/308848a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/308848a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing