Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The role of dendrites in auditory coincidence detection

Abstract

Coincidence-detector neurons in the auditory brainstem of mammals and birds use interaural time differences to localize sounds1,2. Each neuron receives many narrow-band inputs from both ears and compares the time of arrival of the inputs with an accuracy of 10–100 µs (36). Neurons that receive low-frequency auditory inputs (up to about 2 kHz) have bipolar dendrites, and each dendrite receives inputs from only one ear7,8. Using a simple model that mimics the essence of the known electrophysiology and geometry of these cells, we show here that dendrites improve the coincidence-detection properties of the cells. The biophysical mechanism for this improvement is based on the nonlinear summation of excitatory inputs in each of the dendrites and the use of each dendrite as a current sink for inputs to the other dendrite. This is a rare case in which the contribution of dendrites to the known computation of a neuron may be understood. Our results show that, in these neurons, the cell morphology and the spatial distribution of the inputs enrich the computational power of these neurons beyond that expected from ‘point neurons’ (model neurons lacking dendrites).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A point-neuron model for auditory coincidence detectors.
Figure 2: A bipolar-neuron model for coincidence detection.
Figure 3: Biophysical mechanism and frequency dependence.
Figure 4: Bipolar integrate-and-fire model.

Similar content being viewed by others

References

  1. Jeffress, L. A. Aplace theory of sound localization. J. Comp. Physiol. Psychol. 41, 35–39 (1948).

    Article  CAS  Google Scholar 

  2. Carr, C. E. Timing mechanisms in the CNS. Annu. Rev. Neurosci. 16, 223–243 (1993).

    Article  CAS  Google Scholar 

  3. Goldberg, J. M. & Brown, P. B. Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J. Neurophysiol. 32, 613–636 (1969).

    Article  CAS  Google Scholar 

  4. Carr, C. E. & Konishi, M. Acircuit for detection of interaural time differences in the brainstem of the barn owl. J. Neurosci. 10, 3227–246 (1990).

    Article  CAS  Google Scholar 

  5. Overholt, E. M., Rubel, E. W. & Hyson, R. L. Adelay-line circuit for coding interaural time differences in the chick brain stem. J. Neurosci. 12, 1698–1708 (1992).

    Article  CAS  Google Scholar 

  6. Yin, T. C. T. & Chan, J. C. K. Interaural time sensitivity in the medial superior olive of the cat. J.Neurophysiol. 64, 465–488 (1990).

    Article  CAS  Google Scholar 

  7. Smith, Z. D. J. & Rubel, E. W. Organization and development of brain stem auditory nuclei of the chicken: dendritic gradients in nucleus laminaris. J. Comp. Neurol. 186, 213–239 (1979).

    Article  CAS  Google Scholar 

  8. Stotler, W. A. An experimental study of the cells and connections of the superior olivary complex of the cat. J. Comp. Neurol. 98, 401–432 (1953).

    Article  CAS  Google Scholar 

  9. Segev, I., Rinzel, J. & Sheperd, G. The Theoretical Foundation of Dendritic Function: Selected Papers of Wilfrid Rall with Commentaries (MIT Press, Cambridge, MA, (1995)).

    Google Scholar 

  10. Mel, B. Information processing in dendritic trees. Neural Comp. 6, 1031–1085 (1994).

    Article  Google Scholar 

  11. Segev, I. in The Handbook of Brain Theory and Neural Networks (ed. Arbib, M.) 282–289 (MIT Press, Cambridge, MA, (1995)).

    Google Scholar 

  12. Pinsky, P. F. & Rinzel, J. Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. J. Comput. Neurosci. 1, 39–40 (1994).

    Article  CAS  Google Scholar 

  13. Mainen, Z. F. & Sejnowski, T. J. Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382, 363–366 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Softky, W. R. & Koch, C. The highly irregular firing of cortical cells in inconsistent with temporal integration of random EPSPs. J. Neurosci. 13, 334–350 (1993).

    Article  CAS  Google Scholar 

  15. Borst, A. & Egelhaaf, M. Dendritic processing of synaptic information by sensory interneurons. Trends Neurosci. 17, 257–263 (1994).

    Article  CAS  Google Scholar 

  16. Borst, A. How do nerve cells compute? Dendritic integration in fly visual neurons. Acta Physiol. Scand. 157, 403–407 (1996).

    Article  CAS  Google Scholar 

  17. Haag, J. & Borst, A. Amplification of high-frequency synaptic inputs by active dendritic membrane processes. Nature 379, 639–641 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Parks, T. N. & Rubel, E. W. Organization of the projections from n. magnocellularis to n. laminaris. J.Comp. Neurol. 180, 439–448 (1975).

    Article  Google Scholar 

  19. Reyes, A. D., Rubel, E. W. & Spain, W. J. Membrane properties underlying the firing of neurons in the avian cochlear nucleus. J. Neurosci. 14, 5352–5364 (1994).

    Article  CAS  Google Scholar 

  20. Reyes, A. D., Rubel, E. W. & Spain, W. J. In vitro analysis of optimal stimuli for phase-locking and time-delayed modulation of firing in avian nucleus laminaris neurons. J. Neurosci. 16, 993–1000 (1996).

    Article  CAS  Google Scholar 

  21. Zhang, S. & Trussell, L. O. Acharacterization of excitatory postsynaptic potentials in the avian nucleus magnocellularis. J. Neurophysiol. 72, 705–718 (1994).

    Article  CAS  Google Scholar 

  22. Manis, P. B. & Marx, S. O. Outward currents in isolated ventral cochlear nucleus neurons. J. Neurosci. 11, 2865–2880 (1991).

    Article  CAS  Google Scholar 

  23. Agmon-Snir, H., Carr, C. E. & Rinzel, J. Asimple biophysical model for analyzing phase-locking and coincidence detection inauditory neurons. Soc. Neurosci. Abstr. 22, 402 (1996).

    Google Scholar 

  24. Colburn, H. S., Han, Y. & Culotta, C. P. Coincidence model of MSO responses. Hearing Res. 49, 335–346 (1990).

    Article  CAS  Google Scholar 

  25. Brughera, A. R., Stutman, E. R., Carney, L. H. & Colburn, H. S. Amodel with excitation and inhibition for cells in the medial superior olive. Aud. Neurosci. 2, 219–233 (1996).

    Google Scholar 

  26. Gerstner, W., Kempter, R., Van Hemmen, J. L. & Wagner, H. Aneuronal learning rule for submillisecond temporal coding. Nature 383, 76–78 (1996).

    Article  ADS  CAS  Google Scholar 

  27. Warchol, M. E. & Dallos, P. Neural coding in the chick cochlear nucleus. J. Comp. Physiol. 166, 721–734 (1990).

    Article  CAS  Google Scholar 

  28. Morris, C. & Lecar, H. Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35, 193–213 (1981).

    Article  ADS  CAS  Google Scholar 

  29. Rinzel, J. & Ermentrout, G. B. in Methods in Neuronal Modeling: from Synapses to Networks (eds Koch, C. & Segev, I.) 135–169 (MIT Press, Cambridge, MA, (1989)).

    Google Scholar 

  30. Smith, P. H. Structural and functional differences distinguish principal from nonprincipal cells in the guinea pig MSO slice. J. Neurophysiol. 73, 1653–1667 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NIH (to C.E.C.) and the Human Frontier Science Program (to H.A.-S.). We thank G. Gerstein, I. Nelken, E. W. Rubel, D. Sanes and I. Segev for comments, and the NCI Biomedial Supercomputing Center at Frederick for computer resources and technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine E. Carr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agmon-Snir, H., Carr, C. & Rinzel, J. The role of dendrites in auditory coincidence detection. Nature 393, 268–272 (1998). https://doi.org/10.1038/30505

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/30505

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing