Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Signal-dependent noise determines motor planning

Abstract

When we make saccadic eye movements or goal-directed arm movements, there is an infinite number of possible trajectories that the eye or arm could take to reach the target1,2. However, humans show highly stereotyped trajectories in which velocity profiles of both the eye and hand are smooth and symmetric for brief movements3,4. Here we present a unifying theory of eye and arm movements based on the single physiological assumption that the neural control signals are corrupted by noise whose variance increases with the size of the control signal. We propose that in the presence of such signal-dependent noise, the shape of a trajectory is selected to minimize the variance of the final eye or arm position. This minimum-variance theory accurately predicts the trajectories of both saccades and arm movements and the speed–accuracy trade-off described by Fitt's law5. These profiles are robust to changes in the dynamics of the eye or arm, as found empirically6,7. Moreover, the relation between path curvature and hand velocity during drawing movements reproduces the empirical ‘two-thirds power law’8,9. This theory provides a simple and powerful unifying perspective for both eye and arm movement control.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A comparison of bang-bang (dashed line) and minimum-variance (solid line) control for a 10 degree saccade with a duration of 50 ms.
Figure 2: Comparison of empirical and predicted saccade trajectories.
Figure 3: Comparison of empirical and theoretical arm velocity profiles.
Figure 4: Comparison of empirical and predicted arm movement durations.
Figure 5: Comparison of empirical and predicted trajectories for a two-joint arm.

Similar content being viewed by others

References

  1. Bernstein, N. The Coordination and Regulation of Movements(Pergamon, London, (1967)).

    Google Scholar 

  2. Wolpert, D. M. Computational approaches to motor control. Trends Cogn. Sci. 1, 209–216 (1997).

    Article  CAS  Google Scholar 

  3. Morasso, P. Spatial control of arm movements. Exp. Brain Res. 42, 223–227 (1981).

    Article  ADS  CAS  Google Scholar 

  4. Collewijn, H., Erkelens, C. J. & Steinman, R. M. Binocular coordination of human horizontal saccadic eye-movements. J. Physiol. 404, 157–182 (1988).

    Article  CAS  Google Scholar 

  5. Fitts, P. M. The information capacity of the human motor system in controlling the amplitude of movements. J. Exp. Psychol. 47, 381–391 (1954).

    Article  CAS  Google Scholar 

  6. Shadmehr, R. & Mussa-Ivaldi, F. Adaptive representation of dynamics during learning of a motor task. J. Neurosci. 145:, 3208–3224 (1994).

    Article  Google Scholar 

  7. Brashers-Krug, T., Shadmehr, R. & Bizzi, E. Consolidation in human motor memory. Nature 382, 252–255 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Lacquaniti, F., Terzuolo, C. A. & Viviani, P. The law relating kinematic and figural aspects of drawing movements. Acta Psychologica 54, 115–130 (1983).

    Article  CAS  Google Scholar 

  9. Viviani, P. & Schneider, R. Adevelopmental study of the relationship between geometry and kinematics in drawing movements. J. Exp. Psychol. HPP 17, 198–218 (1991).

    Article  CAS  Google Scholar 

  10. Enderle, J. D. & Wolfe, J. W. Time-optimal control of saccadic eye-movements. IEEE Trans. Biomed. Eng. 34, 43–55 (1987).

    Article  CAS  Google Scholar 

  11. Harris, C. M., Wallman, J. & Scudder, C. A. Fourier analysis of saccades in monkeys and humans. J. Neurophysiol. 634:, 877–886 (1990).

    Article  Google Scholar 

  12. Harris, C. M. On the optimal control of behaviour: A stochastic perspective. J. Neurosci. Meth. 83, 73–88 (1998).

    Article  CAS  Google Scholar 

  13. Hogan, N. An organizing principle for a class of voluntary movements. J. Neurosci. 4, 2745–2754 (1984).

    Article  CAS  Google Scholar 

  14. Flash, T. & Hogan, N. The co-ordination of arm movements: An experimentally confirmed mathematical model. J. Neurosci. 5, 1688–1703 (1985).

    Article  CAS  Google Scholar 

  15. Uno, Y., Kawato, M. & Suzuki, R. Formation and control of optimal trajectories in human multijoint arm movements: Minimum torque-change model. Biol. Cybern. 61, 89–101 (1989).

    Article  CAS  Google Scholar 

  16. Wolpert, D. M., Ghahramani, Z. & Jordan, M. I. An internal model for sensorimotor integration. Science 269, 1880–1882 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Clammam, P. H. Statistical analysis of motor unit firing patterns in human skeletal muscle. Biophysics J. 9, 1233–1251 (1969).

    Article  ADS  Google Scholar 

  18. Matthews, P. B. C. Relationship of firing intervals of human motor units to the trajectory of post-spike after-hyperpolarization and synaptic noise. J. Physiol. 492, 597–628 (1996).

    Article  CAS  Google Scholar 

  19. Meyer, D. E., Abrams, R. A., Kornblum, S., Wright, C. E. & Smith, J. E. K. Optimality in human motor performance: Ideal control of rapid aimed movements. Psychol. Rev. 98, 340–370 (1988).

    Article  Google Scholar 

  20. Harris, C. M. Does saccadic under-shoot minimize saccadic flight-time? A Monte Carlo study. Vision Res. 35, 691–701 (1995).

    Article  CAS  Google Scholar 

  21. Robinson, D. A., Gordon, J. L. & Gordon, S. E. Amodel of the smooth pursuit eye movement system. Biol. Cybern. 55, 43–57 (1986).

    Article  MathSciNet  CAS  Google Scholar 

  22. van Gisbergen, J. A. M., Robinson, D. A. & Gielen, C. C. A. M. Aquantitative analysis of generation of saccadic eye movements by burst neurons. J. Neurophysiol. 45, 417–442 (1981).

    Article  CAS  Google Scholar 

  23. van der Helm, F. C. T. & Rozendaal, L. A. in Biomechanics and Neural Control of Movement(eds Winters, J. M. & Crago, P. E.) (Springer, New York, in the press).

  24. Kelso, J. A. S., Southard, D. L. & Goodman, D. On the nature of human interlimb coordination. Science 203, 1029–1031 (1979).

    Article  ADS  CAS  Google Scholar 

  25. Lackner, J. R. & DiZio, P. Rapid adaptation to Coriolis force perturbations of arm trajectory. J. Neurophysiol. 72, 299–313 (1994).

    Article  CAS  Google Scholar 

  26. Sainburg, R. L. & Ghez, C. Limitations in the learning and generalization of multi-joint dynamics. Soc. Neurosci. Abstr. 21, 686 (1995).

    Google Scholar 

  27. Flash, T. & Gurevich, I. in Self-Organization, Computational Maps and Motor Control(eds Morasso, P. G. & Sanguinetti, V.) 423–481 (Elsevier, Amsterdam, (1997)).

    Book  Google Scholar 

  28. Goodbody, S. J. & Wolpert, D. M. Temporal and amplitude generalization in motor learning. J. Neurophysiol. 79, 1825–1838 (1998).

    Article  CAS  Google Scholar 

  29. Kawato, M. in Attention and Performance, XVI(eds Inui, T. & McClelland, J.) 335–367 (MIT Press, Cambridge, MA, (1996)).

    Google Scholar 

  30. Jeannerod, M. The Neural and Behavioural Organization of Goal-directed Movements(OUP Psychology Ser. No. 5, Oxford, (1988)).

    Google Scholar 

Download references

Acknowledgements

We thank S. Goodbody, Z. Ghahramani and M. Pembrey for comments on the manuscript. This project was supported by the MRC, the Wellcome Trust, Help a Child to See charity, the IRIS fund, the Child Health Research Appeal Trust and the Royal Society.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, C., Wolpert, D. Signal-dependent noise determines motor planning. Nature 394, 780–784 (1998). https://doi.org/10.1038/29528

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/29528

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing