Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

GABAB receptors function as a heteromeric assembly of the subunits GABABR1 and GABABR2

Abstract

The principal inhibitory neurotransmitter GABA (γ-aminobutyric acid) exerts its effects through two ligand-gated channels, GABAA and GABAC receptors, and a third receptor, GABAB (ref. 1), which acts through G proteins to regulate potassium and calcium channels. Cells heterologously expressing the cloned DNA encoding the GABABR1 protein exhibit high-affinity antagonist-binding sites2, but they produce little of the functional activity expected from studies of endogenous GABAB receptors in the brain. Here we describe a new member of the GABAB polypeptide family, GABABR2, that shows sequence homology to GABABR1. Neither GABABR1 nor GABABR2, when expressed individually, activates GIRK-type potassium channels; however, the combination of GABABR1 and GABABR2 confers robust stimulation of channel activity. Both genes are co-expressed in individual neurons, and both proteins co-localize in transfected cells. Moreover, immunoprecipitation experiments indicate that the two polypeptides associate with each other, probably as heterodimers. Several G-protein-coupled receptors (GPCRs) exist as high-molecular-weight species, consistent with the formation of dimers by these receptors3,4,5,6,7, but the relevance of these species for the functioning of GPCRs has not been established. We have now shown that co-expression of two GPCR structures, GABABR1 and GABABR2, belonging to the samesubfamily is essential for signal transduction by GABAB receptors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Amino-acid sequence of GABABR2 and localization by in situ hybridization.
Figure 2: Signalling by co-expressed GABABR1 and GABABR2.
Figure 3: Co-localization of GABABR1 and GABABR2 in HEK293 cells by dual-wavelength scanning confocal microscopy.
Figure 4: Identifcation of GABABR1 and GABABR2 in cell lysates and immunoprecipitates.

Similar content being viewed by others

References

  1. Bowery, N. G. GABABreceptor pharmacology. Annu. Rev. Pharmacol. Toxicol. 33, 109–147 (1993).

    Article  CAS  Google Scholar 

  2. Kaupmann, K.et al. Expression cloning of GABABreceptors uncovers similarity to metabotropic gutamate receptors. Nature 386, 239–246 (1997).

    Article  ADS  CAS  Google Scholar 

  3. Hebert, T. E.et al. Apeptide derived from a beta2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J. Biol. Chem. 271, 16384–16392 (1996).

    Article  CAS  Google Scholar 

  4. Cvejic, S. & Devi, L. A. Dimerization of the delta opioid receptor: implication for a role in receptor internalization. J. Biol. Chem. 272, 26959–26964 (1997).

    Article  CAS  Google Scholar 

  5. Maggio, R., Barbier, P., Fornai, F. & Corsini, G. U. Functional role of the third cytoplasmic loop in muscarinic receptor dimerization. J. Biol. Chem. 271, 31055–31060 (1996).

    Article  CAS  Google Scholar 

  6. Ciruela, F.et al. Immunological identification of A1 adenosine receptors in brain cortex. J. Neurosci. Res. 42, 818–828 (1995).

    Article  CAS  Google Scholar 

  7. Romano, C., Yang, W. L. & O'Malley, K. L. Metabotropic glutamate receptor 5 is a disulfide-linked dimer. J. Biol. Chem. 271, 28612–18616 (1996).

    Article  CAS  Google Scholar 

  8. O'Hara, P. J.et al. The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron 11, 41–52 (1998).

    Article  Google Scholar 

  9. Bowery, N. G., Hudson, A. L. & Price, G. W. GABAAand GABABreceptor site distribution in the rat central nervous system. Neuroscience 20, 365–383 (1987).

    Article  CAS  Google Scholar 

  10. North, R. A. Drug receptors and the inhibition of nerve cells. Br. J. Pharmacol. 98, 13–23 (1989).

    Article  CAS  Google Scholar 

  11. Gahwiler, B. H. & Brown, D. A. GABAB-receptor-activated K+ current in voltage-clamped CA3 pyramidal cells in hippocampal cultures. Proc. Natl Acad. Sci. USA 82, 1558–1562 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Andrade, R., Malenka, R. C. & Nicoll, R. A. AG protein couples serotonin and GABABreceptors to the same channels in hippocampus. Science 234, 1261–1265 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Luscher, C., Jan, L. Y., Stoffel, M., Malenka, R. C. & Nicoll, R. A. Gprotein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron 19, 687–697 (1997).

    Article  CAS  Google Scholar 

  14. Dascal, N.et al. Atrial G protein-activated K+ channel: expression cloning and molecular properties. Proc. Natl Acad. Sci. USA 90, 10235–10239 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Krapivinsky, G.et al. The G-protein-gated atrial K channel IKAChis a heteromultimer of two inwardly rectifying K channel proteins. Nature 374, 135–141 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Kubo, Y., Reuveney, E., Slesinger, P. A., Jan, Y. N. & Jan, L. Y. Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel. Nature 364, 802–806 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Kaupmann, K.et al. Structure, pharmacology and chromosomal localization of GABA-B receptors. Soc. Neurosci. Abstr. 23, 954 (1997).

    Google Scholar 

  18. Habert-Ortoli, E., Amiranoff, B., Loquet, I., Laburthe, M. & Mayaux, J. F. Molecular cloning of a functional human galanin receptor. Proc. Natl Acad. Sci. USA 91, 9780–9783 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Bon, C. & Galvan, M. Electrophysiological actions of GABABagonists and antagonists in rat dorso-lateral septal neurones in vitro. Br. J. Pharmacol. 118, 961–967 (1996).

    Article  CAS  Google Scholar 

  20. Seabrook, G. R., Howson, W. & Lacey, M. G. Electrophysiological characterization of potent agonists and antagonists at pre- and postsynaptic GABABreceptors on neurones in rat brain slices. Br. J. Pharmacol. 101, 949–957 (1990).

    Article  CAS  Google Scholar 

  21. Brugger, F., Wicki, U., Olpe, H. R., Froestl, W. & Mickel, S. The action of new potent GABABreceptor angtagonists in the hemisected spinal cord preparation of the rat. Eur. J. Pharmacol. 235, 153–155 (1993).

    Article  CAS  Google Scholar 

  22. Avissar, S., Amitai, G. & Sokolovsky, M. Oligomeric structure of muscarinic receptors is shown by photoaffinity labeling: subunit assembly may explain high- and low-affinity agonist states. Proc. Natl Acad. Sci. USA 80, 156–159 (1983).

    Article  ADS  CAS  Google Scholar 

  23. Wreggett, K. A. & Wells, J. W. Cooperativity manifest in the binding properties of purified cardiac muscarinic receptors. J. Biol. Chem. 270, 22488–22499 (1995).

    Article  CAS  Google Scholar 

  24. McLatchie, L. M.et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393, 333–339 (1998).

    Article  ADS  CAS  Google Scholar 

  25. Nimchinsky, E. A., Hof, P. R., Janssen, W. G. M., Morrison, J. H. & Schmauss, C. Expression of dopamine D3 receptor dimers and tetramers in brain and in transfected cells. J. Biol. Chem. 272, 29229–29237 (1998).

    Article  Google Scholar 

  26. Smith, K. E.et al. Cloned human and rat galanin GALR3 receptors: pharmacology and activation of G-protein inwardly rectifying K+ channels. J. Cell Biol. 273, 23321–23326 (1998).

    CAS  Google Scholar 

  27. Durkin, M. M.et al. Localization of messenger RNAs encoding three GABA transporters in rat brain: an in situ hybridization study. Brain Res. Mol. Brain Res. 33, 7–21 (1995).

    Article  CAS  Google Scholar 

  28. Quick, M. W. & Lester, H. A. Methods for expression of excitability proteins in Xenopus oocytes. Methods Neurosci. 19, 261–279 (1994).

    Article  CAS  Google Scholar 

  29. Salon, J. A. & Owicki, J. C. Real-time measurements of receptor activity: applications of microphysiometric techniques to receptor biology. Methods Neurosci. 25, 201–233 (1995).

    Article  CAS  Google Scholar 

  30. Graham, J. in Centrifugation (The Practical Approach Series) (ed. Rickwood, D.) 161–182 (IRL, Oxford, 1984).

    Google Scholar 

Download references

Acknowledgements

We thank T. Swayne for use of the confocal microscopy facility at Columbia University; H.-Y. Chang, K. Ogozalek, J. Huang and Y. Wan for support with molecular biology; P. Vaysse for cell biology facilities; C. Forray for advice on membrane fractionation; and S. Rabacchi for helpful hints on protein immunodetection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth A. Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, K., Borowsky, B., Tamm, J. et al. GABAB receptors function as a heteromeric assembly of the subunits GABABR1 and GABABR2. Nature 396, 674–679 (1998). https://doi.org/10.1038/25348

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/25348

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing