Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The K+/Cl co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation

Abstract

GABA (γ-aminobutyric acid) is the main inhibitory transmitter in the adult brain, and it exerts its fast hyperpolarizing effect through activation of anion (predominantly Cl)-permeant GABAA receptors1. However, during early neuronal development, GABA A-receptor-mediated responses are often depolarizing2,3, which may be a key factor in the control of several Ca2+−dependent developmental phenomena, including neuronal proliferation, migration and targeting4,5,6. To date, however, the molecular mechanism underlying this shift in neuronal electrophysiological phenotype is unknown. Here we show that, in pyramidal neurons of the rat hippocampus, the ontogenetic change in GABAA-mediated responses from depolarizing to hyperpolarizing is coupled to a developmental induction of the expression of the neuronal Cl-extruding K+/Cl co-transporter, KCC2 (ref. 7). Antisense oligonucleotide inhibition of KCC2 expression produces a marked positive shift in the reversal potential of GABAA responses in functionally mature hippocampal pyramidal neurons. These data support the conclusion that KCC2 is the main Cl extruder to promote fast hyperpolarizing postsynaptic inhibition in the brain.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Developmental regulation and neuron-specific expression of the K+/Cl co-transporter KCC2.
Figure 2: Expression of KCC2 mRNA in the developing rat hippocampus revealed by in situ hybridization.
Figure 3: Specific inhibition of KCC2 protein expression by antisense-A PODN and its suppressing effect on hyperpolarizing GABAA-receptor-mediated responses.

Similar content being viewed by others

References

  1. Kaila, K. Ionic basis of GABAAreceptor channel function in the nervous system. Prog. Neurobiol. 42, 489– 537 (1994).

    Article  CAS  Google Scholar 

  2. Ben-Ari, Y., Cherubini, E., Corradetti, R. & Gaiarsa, J. L. Giant synaptic potentials in immature rat CA3 hippocampal neurones. J. Physiol. (Lond.) 416, 303–325 (1989).

    Article  CAS  Google Scholar 

  3. Cherubini, E., Gaiarsa, J. L. & Ben-Ari, Y. GABA: an excitatory transmitter in early postnatal life. Trends Neurosci. 14, 515– 519 (1991).

    Article  CAS  Google Scholar 

  4. Serafini, R., Valeyev, A. Y., Barker, J. L. & Poulter, M. O. Depolarizing GABA-activated Cl channels in embryonic rat spinal and olfactory bulb cells. J. Physiol. (Lond.) 488, 371–386 (1995).

    Article  CAS  Google Scholar 

  5. Yuste, R. & Katz, L. Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters. Neuron 6, 333–344 (1991).

    Article  CAS  Google Scholar 

  6. LoTurco, J., Owens, D., Heath, M., Davis, M. & Kriegstein, A. GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15, 1287 –1298 (1995).

    Article  CAS  Google Scholar 

  7. Payne, J. A., Stevenson, J. & Donaldson, L. Molecular characterization of a putative K-Cl cotransporter in rat brain. A neuronal-specific isoform. J. Biol. Chem. 271, 16245–16252 (1996).

    Article  CAS  Google Scholar 

  8. Gillen, C., Brill, S., Payne, J. A. & Forbush, B. II Molecular cloning and functional expression of the K-Cl cotransporter from rabbit, rat, and human. A new member of the cation-chloride cotransporter family. J. Biol. Chem. 271, 16237–16244 (1993).

    Article  Google Scholar 

  9. Payne, J. A. Functional characterization of the neuronal-specific K-Cl cotransporter KCC2: Implications for [K+]0regulation. Am. J. Physiol. 42, C1516–C1525 (1997).

    Article  Google Scholar 

  10. Misgeld, U., Deisz, R. A., Dodt, H. U. & Lux, H. D. The role of chloride transport in postsynaptic inhibition of hippocampal neurons. Science 232, 1413–1415 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Thompson, S. M. & Gähwiler, B. H. Activity-dependent disinhibition. II. Effect of extracellular potassium, furosemide, and membrane potential on E cl - in hippocampal CA3 neurons. J. Neurophysiol. 61, 512–523 (1989).

    Article  CAS  Google Scholar 

  12. Deschenes, M., Feltz, P. & Lamour, Y. Amodel for an estimate in vivo of the ionic basis of presynaptic inhibition: an intracellular analysis of the GABA-induced depolarization in rat dorsal root ganglia. Brain Res. 118, 486–493 (1976).

    Article  CAS  Google Scholar 

  13. Bayer, S. A. & Altman, J. Directions in neurogenetic gradients and patterns of anatomical connections in the telencephalon. Prog. Neurobiol. 29, 57–106 ( 1987).

    Article  CAS  Google Scholar 

  14. Rivera, C., Wegelius, K., Reeben, M., Saarma, M. & Kaila, K. Developmental regulation of K-Cl cotransporter (KCC2 and KCC1) mRNA in early postnatal rat hippocampus. Soc. Neurosci. Abstr. 23, 26.7 (1997).

    Google Scholar 

  15. Clayton, G. H., Owens, G. C., Wolff, J. S. & Smith, R. L. Ontogeny of cation-Cl cotransporter expression in rat neocortex. Brain Res. Dev. Brain Res. 109, 281– 292 (1998).

    Article  CAS  Google Scholar 

  16. Stoppini, L., Buchs, P. A. & Muller, D. Asimple method for organotypic cultures of nervous tissue. J. Neurosci. Methods 37, 173– 182 (1991).

    Article  CAS  Google Scholar 

  17. Bevensee, M. O. & Boron, W. F. in pH and Brain Function(eds Kaila, K. & Ransom, B.) 211–231 (Wiley, New York, (1998)).

    Google Scholar 

  18. Kaila, K., Voipio, J., Paalasmaa, P., Pasternack, M. & Deisz, R. A. The role of bicarbonate in GABA Areceptor-mediated IPSPs of rat neocortical neurons. J. Physiol. (Lond.) 464, 273–289 ( 1993).

    Article  CAS  Google Scholar 

  19. Clayton, G. H., Staley, K. J., Wilcox, C. L., Owens, G. C. & Smith, R. L. Developmental expression of CLC-2 in the rat nervous system. Brain Res. Dev. Brain Res. 108, 307–318 (1998).

    Article  CAS  Google Scholar 

  20. Zhang, L., Spiegelman, I. & Carlen, P. Development of GABA-mediated chloride-dependent inhibition in CA1 pyramidal neurones of immature rat hippocampal slices. J. Physiol. (Lond.) 444, 25–49 (1991).

    Article  CAS  Google Scholar 

  21. Sutor, B. & Luhmann, H. Development of exitatory and inhibitory postsynaptic potentials in the rat neocortex. Perspectives Dev. Neurobiol. 2, 409–419 ( 1994).

    Google Scholar 

  22. Wu, W. L., Ziskind-Conhaim, L. & Sweet, M. A. Early development of glycine and GABA mediated synapses in rat spinal cord. J. Neurosci. 12, 3935 –3945 (1992).

    Article  CAS  Google Scholar 

  23. van den Pol, A. N., Obrietan, K. & Chen, G. Exitatory action of GABA after neuronal trauma. J. Neurosci. 16, 4283–4292 (1996).

    Article  CAS  Google Scholar 

  24. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chlorophorm extraction. Anal. Biochem. 162, 156–159 (1987).

    Article  CAS  Google Scholar 

  25. Pasternack, M., Smirnov, S. & Kaila, K. Proton modulation of functionally distinct GABAAreceptors in acutely isolated pyramidal neurons of rat hippocampus. Neuropharmacology 35, 1279–1288 ( 1996).

    Article  CAS  Google Scholar 

  26. Moshnyakov, M., Arumäe, U. & Saarma, M. mRNAs for one two or three members of trk receptor family are expressed in single rat trigeminal ganglion neurons. Mol. Brain Res. 43, 141–148 ( 1996).

    Article  CAS  Google Scholar 

  27. Bengström, M. & Paulin, L. Synthesis and purification of thio-oligonucleotides. Nucleic Acids Symp. Ser. 24, 288 (1991).

    Google Scholar 

  28. Pirvola, U. et al. Brain-derived neurotrophic factor and neurotrophin 3 mRNAs in the peripheral target fields of developing inner ear ganglia. Proc. Natl Acad. Sci. USA 89, 9915–9919 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Edwards, T. Freund and H. Rauvala for comments on this paper. This work was supported by the Academy of Finland (K.K. and M.S.), the Sigrid Juselius Foundation (K.K. and M.S.), the Swedish Council for Natural Sciences (C.R.) and Hibbard E. Williams Research Fund, National Institute of Neurological Disorders and Stroke, Epilepsy Foundation of America (J.A.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Kaila.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivera, C., Voipio, J., Payne, J. et al. The K+/Cl co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397, 251–255 (1999). https://doi.org/10.1038/16697

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/16697

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing