Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex

Abstract

'What' and 'where' visual streams define ventrolateral object and dorsolateral spatial processing domains in the prefrontal cortex of nonhuman primates. We looked for similar streams for auditory–prefrontal connections in rhesus macaques by combining microelectrode recording with anatomical tract-tracing. Injection of multiple tracers into physiologically mapped regions AL, ML and CL of the auditory belt cortex revealed that anterior belt cortex was reciprocally connected with the frontal pole (area 10), rostral principal sulcus (area 46) and ventral prefrontal regions (areas 12 and 45), whereas the caudal belt was mainly connected with the caudal principal sulcus (area 46) and frontal eye fields (area 8a). Thus separate auditory streams originate in caudal and rostral auditory cortex and target spatial and non-spatial domains of the frontal lobe, respectively.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tonotopic maps of the lateral belt region recorded in four monkeys.
Figure 2: Photomicrographs of anterograde and retrograde labeling in the rostral and ventral regions of the prefrontal cortex after injections of Fluoro-ruby (a, d; case DU) or Fluoro-Emerald (b, c; case RQ) into area AL.
Figure 3: Anterograde and retrograde labeling in the prefrontal cortex.

Similar content being viewed by others

References

  1. Ungerleider, L. G. & Mishkin, M. in Analysis of Visual Behavior (eds. Ingle, D. J., Goodale, M. A. & Mansfield, R. J. W.) 549–586 (MIT Press, Cambridge, Massachusetts, 1982).

    Google Scholar 

  2. Wilson, F. A., O'Scalaidhe, S .P. & Goldman-Rakic, P. S. Dissociation of object and spatial processing domains in primate prefrontal cortex. Science 260,1955–1958 (1993).

    Article  CAS  Google Scholar 

  3. Webster, M. J., Bachevalier, J. & Ungerleider, L. G. Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cereb. Cortex 4, 470–483 (1994).

    Article  CAS  Google Scholar 

  4. Buckner, R. L., Raichle, M. E. & Petersen, S. E. Dissociation of human prefrontal cortical areas across different speech production tasks and gender groups. J. Neurophysiol. 74, 2163–2173 (1995).

    Article  CAS  Google Scholar 

  5. Stromswold, K., Caplan, D., Alpert, N. & Rauch, S. Localization of syntactic comprehension by positron emission tomography. Brain Lang. 52, 452–473 (1996).

    Article  CAS  Google Scholar 

  6. Gabrieli, J. D. E., Poldrack, R. A. & Desmond, J. E. The role of left prefrontal cortex in language and memory. Proc. Natl. Acad. Sci. USA 95, 906–913 (1998).

    Article  CAS  Google Scholar 

  7. Stevens, A. A., Goldman-Rakic, P. S., Gore, J. C., Fulbright, R. K. & Wexler, B. E. Cortical dysfunction in schizophrenia during auditory word and tone working memory demonstrated by functional magnetic resonance imaging. Arch. Gen. Psychiatry 55, 1097–1103 (1998).

    Article  CAS  Google Scholar 

  8. Pandya, D. N. & Kuypers, H. G. J. M. Cortico-cortical connections in the rhesus monkey. Brain Res. 13, 13–36 (1969).

    Article  CAS  Google Scholar 

  9. Chavis, D. A. & Pandya, D. N. Further observations on corticofrontal connections in the rhesus monkey. Brain Res. 117, 369–386 (1976).

    Article  CAS  Google Scholar 

  10. Petrides, M. & Pandya, D. N. Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey. J. Comp. Neurol. 273, 52–66 (1988).

    Article  CAS  Google Scholar 

  11. Seltzer, B. & Pandya, D. N. Frontal lobe connections of the superior temporal sulcus in the rhesus monkey. J. Comp. Neurol. 281, 97–113 (1989).

    Article  CAS  Google Scholar 

  12. Barbas, H. Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey. J. Comp. Neurol. 276, 313–342 (1988).

    Article  CAS  Google Scholar 

  13. Hackett, T. A., Stepniewska, I. & Kaas, J. H. Prefrontal connections of the parabelt auditory cortex in macaque monkeys. Brain Res. 817, 45–58 (1999).

    Article  CAS  Google Scholar 

  14. Romanski, L. M., Bates, J. F. & Goldman-Rakic, P. S. Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey. J. Comp. Neurol. 403, 141–157 (1999).

    Article  CAS  Google Scholar 

  15. Galaburda, A. M. & Pandya, D. N. The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey. J. Comp. Neurol. 221, 169–184 (1983).

    Article  CAS  Google Scholar 

  16. Morel, A., Garraghty, P. E. & Kaas, J. H. Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. J. Comp. Neurol. 335, 437–459 (1993).

    Article  CAS  Google Scholar 

  17. Rauschecker, J. P., Tian, B. & Hauser, M. Processing of complex sounds in the macaque nonprimary auditory cortex. Science 268, 111–114 (1995).

    Article  CAS  Google Scholar 

  18. Kosaki, H., Hashikawa, T., He, J. & Jones, E.G. Tonotopic organization of auditory cortical fields delineated by parvalbumin immunoreactivity in macaque monkeys. J. Comp. Neurol. 386, 304–316 (1997).

    Article  CAS  Google Scholar 

  19. Rauschecker, J. P., Tian, B., Pons, T. & Mishkin, M. Serial and parallel processing in rhesus monkey auditory cortex. J. Comp. Neurol. 382, 89–103 (1997).

    Article  CAS  Google Scholar 

  20. Hackett, T. A., Stepniewska, I. & Kaas, J. H. Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. J. Comp. Neurol. 394, 475–495 (1998).

    Article  CAS  Google Scholar 

  21. Rauschecker, J. P. Parallel processing in the auditory cortex of primates. Audiol. Neurootol. 3, 86–103 (1998).

    Article  CAS  Google Scholar 

  22. Leinonen, L., Hyvarinen, J. & Sovijarvi, A. R. Functional properties of neurons in the temporo-parietal association cortex of awake monkey. Exp. Brain Res. 39, 203–215 (1980).

    Article  CAS  Google Scholar 

  23. Benson, D. A., Hienz, R. D. & Goldstein, M. H. Jr. Single-unit activity in the auditory cortex of monkeys actively localizing sound sources: spatial tuning and behavioral dependency. Brain Res. 219, 249–267 (1981).

    Article  CAS  Google Scholar 

  24. Hackett, T. A., Stepniewska, I. & Kaas, J. H. Thalamocortical connections of the parabelt auditory cortex in macaque monkeys. J. Comp. Neurol. 400, 271–286 (1998).

    Article  CAS  Google Scholar 

  25. Rauschecker, J. P. Cortical processing of complex sounds. Curr. Opin. Neurobiol. 8, 516–521 (1998).

    Article  CAS  Google Scholar 

  26. Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    Article  CAS  Google Scholar 

  27. Goldman-Rakic, P. S. The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Phil. Trans. R. Soc. Lond. B Biol. Sci. 351, 1445–1453 (1996).

    Article  CAS  Google Scholar 

  28. Fuster, J. M. The Prefrontal Cortex 2nd edn. (Raven, New York, 1989).

    Google Scholar 

  29. Goldman-Rakic, P. in Handbook of Physiology. Section 1: The Nervous System. Vol. V Higher Functions of the Brain (ed. Plum, F.) 373–418 (American Physiological Society, Bethesda, 1987).

    Google Scholar 

  30. McCarthy, G. et al. Activation of human prefrontal cortex during spatial and nonspatial working memory tasks measured by functional MRI. Cereb. Cortex 6, 600–611 (1996).

    Article  CAS  Google Scholar 

  31. Courtney, S. M., Ungerleider, L. G., Keil, K. & Haxby, J. V. Object and spatial visual working memory activate separate neural systems in human cortex. Cereb. Cortex 6, 39–49 (1996).

    Article  CAS  Google Scholar 

  32. Goldman, P. S. & Rosvold, H. E. Localization of function within the dorsolateral prefrontal cortex of the rhesus monkey. Exp. Neurol. 27, 291–304 (1970).

    Article  CAS  Google Scholar 

  33. Azuma, M. & Suzuki, H. Properties and distribution of auditory neurons in the dorsolateral prefrontal cortex of the alert monkey. Brain Res. 298, 343–346 (1984).

    Article  CAS  Google Scholar 

  34. Vaadia, E., Benson, D. A., Hienz, R. D. & Goldstein, M. H. Jr. Unit study of monkey frontal cortex: active localization of auditory and of visual stimuli. J. Neurophysiol. 56, 934–952 (1986).

    Article  CAS  Google Scholar 

  35. Petrides, M. The effect of periarcuate lesions in the monkey on the performance of symmetrically and asymmetrically reinforced visual and auditory go, no-go tasks. J. Neurosci. 6, 2054–2063 (1986).

    Article  CAS  Google Scholar 

  36. Bushara, K. et al. Evidence for modality-specific frontal and parietal areas for auditory and visual spatial localization in humans. Nat. Neurosci. 2, 759–766,(1999).

    Article  CAS  Google Scholar 

  37. Cavada, C. & Goldman-Rakic, P.S. Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J. Comp. Neurol. 287, 422–445 (1989).

    Article  CAS  Google Scholar 

  38. Andersen, R. A., Snyder, L. H., Bradley, D. C. & Xing, J. Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu. Rev. Neurosci. 20, 303–330 (1997).

    Article  CAS  Google Scholar 

  39. Mazzoni, P., Bracewell, R. M., Barash, S. & Andersen, R. A. Spatially tuned auditory responses in area LIP of macaques performing delayed memory saccades to acoustic targets. J. Neurophysiol. 75,1233–1241 (1996).

    Article  CAS  Google Scholar 

  40. Blood, A. J., Zatorre, R. J., Bermudez, P. & Evans, A. C. Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nat. Neurosci. 2, 382–387 (1999).

    Article  CAS  Google Scholar 

  41. Demb, J. B. et al. Semantic encoding and retrieval in the left inferior prefrontal cortex: a functional MRI study of task difficulty and process specificity. J. Neurosci. 15, 5870–5878 (1995).

    Article  CAS  Google Scholar 

  42. Deacon, T. W. Cortical connections of the inferior arcuate sulcus cortex in the macaque brain. Brain Res. 573, 8–26 (1992).

    Article  CAS  Google Scholar 

  43. Preuss, T. M. & Goldman-Rakic, P. Myelo- and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate Galago and the anthropoid primate Macaca. J. Comp. Neurol. 310, 429–474 (1991).

    Article  CAS  Google Scholar 

  44. Gross, C. G. & Weiskrantz, L. Evidence for dissociation of impairment on auditory discrimination and delayed response following lateral frontal lesions in monkeys. Exp. Neurol. 5,453–476 (1962).

    Article  CAS  Google Scholar 

  45. Lawicka, W., Mishkin, M. & Rosvold, H. W. Dissociation of impairment on auditory tasks following orbital and dorsolateral frontal lesions in monkeys. Proc. Congr. Polish Physiol. Soc. 10, 178 (1966).

    Google Scholar 

  46. Iversen, S. D. & Mishkin, M. Perseverative interference in monkeys following selective lesions of the inferior prefrontal convexity. Exp. Brain Res. 11, 376–386 (1970).

    Article  CAS  Google Scholar 

  47. Tanila, H., Carlson, S., Linnankoski, I. & Kahila, H. Regional distribution of functions in dorsolateral prefrontal cortex of the monkey. Behav. Brain Res. 53, 3–71 (1993).

    Article  Google Scholar 

  48. Bodner, M., Kroger, J. & Fuster, J. M. Auditory memory cells in dorsolateral prefrontal cortex. Neuroreport 7, 1905–1908 (1996).

    Article  CAS  Google Scholar 

  49. Benevento, L. A., Fallon, J., Davis, B. J. & Rezak, M. Auditory–visual interaction in single cells in the cortex of the superior temporal sulcus and the orbital frontal cortex of the macaque monkey. Exp. Neurol. 57, 849–872 (1977).

    Article  CAS  Google Scholar 

  50. O'Scalaidhe, S. P., Wilson, F. A. & Goldman-Rakic, P. S. Areal segregation of face-processing neurons in prefrontal cortex. Science 278, 1135–1138 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Alexander Kustov, Amy Durham and Aaron Lord for help with electrophysiological mapping, Hisayuki Ojima for help with injections and M. Pappy and J. Coburn for their help with histology. We would also like to thank E. C. Muly, S. O'Scalaidhe and A. Stevens for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Romanski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romanski, L., Tian, B., Fritz, J. et al. Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nat Neurosci 2, 1131–1136 (1999). https://doi.org/10.1038/16056

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/16056

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing