Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activity of neurons in the lateral intraparietal area of the monkey during an antisaccade task

Abstract

The close relationship between saccadic eye movements and vision complicates the identification of neural responses associated with each function. Visual and saccade-related responses are especially closely intertwined in a subdivision of posterior parietal cortex, the lateral parietal area (LIP). We analyzed LIP neurons using an antisaccade task in which monkeys made saccades away from a salient visual cue. The vast majority of neurons reliably signaled the location of the visual cue. In contrast, most neurons had only weak, if any, saccade-related activity independent of visual stimulation. Thus, whereas the great majority of LIP neurons reliably encoded cue location, only a small minority encoded the direction of the upcoming saccade.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The prosaccade/antisaccade task.
Figure 2: The activity of four neurons on no-delay prosaccade and antisaccade trials.
Figure 3: Information transmitted about cue location and saccade direction across the entire sample (105 neurons).
Figure 4: Selectivity of the presaccadic activity for saccade direction in trials in which the cue appeared in the response field (abscissa) and in antisaccade trials (ordinate) for all 105 neurons.
Figure 5: Comparison of activity preceding prosaccades and antisaccades for the entire sample, for no-delay trials (105 neurons) and delay trials (79 neurons).
Figure 6: Dependence of delay period and presaccadic activity on direct visual guidance, for two neurons.
Figure 7: Comparison of the cue-evoked response on antisaccade and prosaccade trials for all 105 neurons.

Similar content being viewed by others

References

  1. Hallett, P. E. Primary and secondary saccades to goals defined by instructions. Vision Res. 18, 1279–1296 (1978).

    Article  CAS  Google Scholar 

  2. Everling, S. & Fischer, B. The antisaccade: a review of basic research and clinical studies. Neuropsychologia 36, 885–899 (1998).

    Article  CAS  Google Scholar 

  3. Amador, N., Schlag-Rey, M. & Schlag, J. Primate antisaccades. I. Behavioral characteristics. J. Neurophysiol. 80, 1775– 1786 (1998).

    Article  CAS  Google Scholar 

  4. Everling, S., Dorris, M. C., Klein, R. M. & Munoz, D. P. Role of primate superior colliculus in preparation and execution of anti-saccades and pro-saccades. J. Neurosci. 19, 2740– 2754 (1999).

    Article  CAS  Google Scholar 

  5. Blatt, G. J., Andersen, R. A. & Stoner, G. R. Visual receptive field organization and cortico-cortical connections of the lateral intraparietal area (area LIP) in the macaque. J. Comp. Neurol. 299, 421–445 (1990).

    Article  CAS  Google Scholar 

  6. Baizer, J. S., Desimone, R. & Ungerleider, L. G. Comparison of subcortical connections of inferior temporal and posterior parietal cortex in monkeys. Vis. Neurosci. 10, 59–72 ( 1993).

    Article  CAS  Google Scholar 

  7. Suzuki, W. A. & Amaral, D. G. Perirhinal and parahippocampal cortices in the macaque monkey: cortical afferents. J. Comp. Neurol. 350, 497–533 ( 1994).

    Article  CAS  Google Scholar 

  8. Colby, C. L., Duhamel, J.-R. & Goldberg, M. E. Visual, presaccadic and cognitive activation of single neurons in monkey lateral intraparietal area. J. Neurophysiol. 76, 2841–2852 ( 1996).

    Article  CAS  Google Scholar 

  9. Gottlieb, J., Kusunoki, M. & Goldberg, M. E. The representation of visual salience in monkey posterior parietal cortex. Nature 391, 481– 484 (1997).

    Article  Google Scholar 

  10. Pare, M. & Wurtz, R. Monkey posterior parietal neurons antidromically activated from superior colliculus. J. Neurophysiol. 78, 3493–3497 ( 1997).

    Article  CAS  Google Scholar 

  11. Barash, S., Bracewell, R. M., Fogassi, L., Gnadt, J. W. & Andersen, R. A. Saccade-related activity in the lateral intraparietal area. II. Spatial properties. J. Neurophysiol. 66, 1109–1124 ( 1991).

    Article  CAS  Google Scholar 

  12. Mazzoni, P., Bracewell, R. M., Barash, S. & Andersen, R. A. Motor intention activity in the macaque's lateral intraparietal area. I. Dissociation of motor plan from sensory memory. J. Neurophysiol. 76, 1439–1456 (1996).

    Article  CAS  Google Scholar 

  13. Andersen, R. A., Snyder, L. H., Bradley, D. C. & Xing, J. Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu. Rev. Neurosci. 20, 303–330 (1997).

    Article  CAS  Google Scholar 

  14. Colby, C. L. & Goldberg, M. E. Space and attention in parietal cortex. Annu. Rev. Neurosci. 22, 319– 349 (1999).

    Article  CAS  Google Scholar 

  15. Richmond, B. J., Optican, L. M. & Spitzer, H. Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex. I. Stimulus-response relations. J. Neurophysiol. 64, 351–369 (1990).

    Article  CAS  Google Scholar 

  16. Chee-Orts, M.-N. & Optican, L. M. Cluster method for analysis of transmitted information in multivariate neuronal data. Biol. Cybern. 69, 29–35 (1993).

    Article  CAS  Google Scholar 

  17. Platt, M. L. & Glimcher, P. W. Responses of intraparietal neurons to saccadic targets and visual distractors. J. Neurophysiol. 78, 1574–1589 (1997).

    Article  CAS  Google Scholar 

  18. Snyder, L. H., Batista, A. P. & Andersen, R. A. Coding of intention in the posterior parietal cortex. Nature 386, 167–170 (1997).

    Article  CAS  Google Scholar 

  19. Schlag-Rey, M., Amador, N., Sanchez, H. & Schlag, J. Antisaccade performance predicted by neuronal activity in the supplementary eye field. Nature 390, 398–401 ( 1997).

    Article  CAS  Google Scholar 

  20. Snyder, L. H., Batista, A. P. & Andersen, R. A. Change in motor plan, without a change in the spatial locus of attention, modulates activity in posterior parietal cortex. J. Neurophysiol. 79, 2814–2819 (1998).

    Article  CAS  Google Scholar 

  21. Funahashi, S., Chafee, M. W. & Goldman-Rakic, P. S. Prefrontal neuronal activity in rhesus monkeys performing a delayed antisaccade task. Nature 365, 753–756 (1993).

    Article  CAS  Google Scholar 

  22. Chafee, M. V. & Goldman-Rakic, P. S. Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. J. Neurophysiol. 79, 2919–2940 (1998).

    Article  CAS  Google Scholar 

  23. Yantis, S. Attentional Capture in Vision 45–76 (American Psychological Association, Washington, D.C., 1996).

    Google Scholar 

  24. Bruce, C. J. & Goldberg, M. E. Primate frontal eye fields: I. Single neurons discharging before saccades. J. Neurophysiol. 53, 603–635 ( 1985).

    Article  CAS  Google Scholar 

  25. Segraves, M. A. & Goldberg, M. E. Functional properties of corticotectal neurons in the monkey's frontal eye field. J. Neurophysiol. 58, 1387–1419 (1987).

    Article  CAS  Google Scholar 

  26. Heide, W. & Kompf, D. Combined deficits of saccades and visuo-spatial orientation after cortical lesions. Exp. Brain Res. 123, 164–171 ( 1998).

    Article  CAS  Google Scholar 

  27. Gaymard, B., Ploner, C. J., Rivaud, S., Vermersch, A. I. & Pierrot-Deseilligny, C. Cortical control of saccades. Exp. Brain Res. 123, 159– 163 (1998).

    Article  CAS  Google Scholar 

  28. Guitton, D., Buchtel, H. A. & Douglas, R. M. Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and generating goal-directed saccades. Exp. Brain Res. 58, 455–472 (1985).

    Article  CAS  Google Scholar 

  29. Hays, A. V., Richmond, B. J. & Optican, L. M. A UNIX-based multiple process system for real-time data acquisition and control. WESCON Conf. Proc. 2, 1–10 (1982).

    Google Scholar 

Download references

Acknowledgements

We thank Jay Edelman for discussions and comments that helped to improve the manuscript. We are grateful to the staff of the National Eye Institute for assistance in all aspects of this work, James Raber and Ginger Tansey for veterinary care, John W. McClurkin for display programming, Thomas Ruffner and Altah Nichols for machining, Lee Jensen for electronics, Mitchell Smith for histology, Art Hays for computer systems, Brian Keegan for technical assistance, and Becky Harvey and Jean Steinberg for facilitating everything. The Laboratory of Diagnostic Radiology of the Clinical Center provided MRI services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline Gottlieb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gottlieb, J., Goldberg, M. Activity of neurons in the lateral intraparietal area of the monkey during an antisaccade task. Nat Neurosci 2, 906–912 (1999). https://doi.org/10.1038/13209

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/13209

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing