Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reversible neural inactivation reveals hippocampal participation in several memory processes

Abstract

Studies of patients and animals with brain lesions have implicated the hippocampal formation in spatial, declarative/relational and episodic types of memory. These and other types of memory consist of a series of interdependent but potentially dissociable memory processes—encoding, storage, consolidation and retrieval. To identify whether hippocampal activity contributes to these processes independently, we used a novel method of inactivating synaptic transmission using a water-soluble antagonist of AMPA/kainate glutamate receptors. Once calibrated using electrophysiological and two-deoxyglucose techniques in vivo, drug or vehicle was infused chronically or acutely into the dorsal hippocampus of rats at appropriate times during or after training in a water maze. Our findings indicate that hippocampal neural activity is necessary for both encoding and retrieval of spatial memory and for either trace consolidation or long-term storage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The AMPA/kainate receptor antagonist LY326325 blocks fast synaptic transmission at perforant path/granule cell synapses.
Figure 2: The AMPA/kainate receptor antagonist LY326325 reduces glucose utilization in the dorsal hippocampus.
Figure 3: Hippocampal inactivation disrupts encoding- and retrieval-related processes of spatial memory.
Figure 4: Chronic but not acute inactivation of the dorsal hippocampus interferes with a post-training memory process.
Figure 5: Chronic LY interferes with a post-training memory process but does not cause any residual impairment of encoding or retrieval.
Figure 6: The specificity of the effects of post-training hippocampal inactivation.

Similar content being viewed by others

References

  1. O'Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Clarendon, Oxford, 1978).

    Google Scholar 

  2. Squire, L. R. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99, 195– 231 (1992).

    Article  CAS  Google Scholar 

  3. Cohen, N. J. & Eichenbaum, H. E. Memory, Amnesia and the Hippocampal System (MIT Press, Cambridge, Massachusetts, 1993).

    Google Scholar 

  4. Gaffan, D. Scene-specific memory for objects: a model of episodic memory impairment in monkeys with fornix transection. J. Cogn. Neurosci. 6, 305–320 (1994).

    Article  CAS  Google Scholar 

  5. Vargha-Khadem, F. et al. Differential effects of early hippocampal pathology on episodic and semantic memory. Science 277, 376–380 (1997).

    Article  CAS  Google Scholar 

  6. Milner, B. in Amnesia (eds. Zangwill, O. L. & Whitty, C. W. M.) 109– 133 (Butterworth, London, 1966).

    Google Scholar 

  7. Tulving, E. Elements of Episodic Memory (Clarendon, Oxford, 1983 ).

    Google Scholar 

  8. Shallice, T. From Neuropsychology to Mental Structure (Cambridge Univ. Press, New York, 1988).

    Book  Google Scholar 

  9. McCarthy, R. A. & Warrington, E. A. Cognitive Neuropsychology (Academic, San Diego, 1990).

    Google Scholar 

  10. Ambrogi Lorenzini, C. G. Neural topography and chronology of memory consolidation: a review of functional inactivation findings. Neurobiol. Learn. Mem. 71, 1–18 (1999).

    Article  CAS  Google Scholar 

  11. Bliss, T. V. P. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 ( 1993).

    Article  CAS  Google Scholar 

  12. Morris, R. G. M. & Frey, U. Hippocampal synaptic plasticity: role in spatial learning or the automatic recording of attended experience? Phil. Trans. R. Soc. Lond. B Biol. Sci. 352, 1489–1503 (1997).

    Article  CAS  Google Scholar 

  13. Schoepp, D. D. et al. In vitro and in vivo antagonism of AMPA receptor activation by (3S, 4aR, 6R, 8aR)-6-[2-(1(2)H-tetrazole-5-yl) ethyl] decahydroisoquinoline-3-carboxylic acid. Neuropharmacology 34, 1159– 1168 (1995).

    Article  CAS  Google Scholar 

  14. Bleakman, D. & Lodge, D. Neuropharmacology of AMPA and kainate receptors. Neuropharmacology 37, 1187– 1204 (1998).

    Article  CAS  Google Scholar 

  15. Honore, T. et al. Quinoxalinediones: potent competitive non-NMDA glutamate receptor antagonists. Science 241, 701– 703 (1988).

    Article  CAS  Google Scholar 

  16. Jarrard, L. E. On the role of the hippocampus in learning and memory in the rat. Behav. Neural Biol. 60, 9–26 (1993).

    Article  CAS  Google Scholar 

  17. Sokoloff, L. et al. The [14C] deoxyglucose method for the measurement of local cerebral utilization: theory, procedure and normal values in the conscious and anaesthetized albino rat. J. Neurochem. 28, 897–916 (1977).

    Article  CAS  Google Scholar 

  18. Browne, S. E. & McCulloch, J. AMPA receptor antagonists and local cerebral glucose utilisation in the rat. Brain Res. 641, 10–20 (1994).

    Article  CAS  Google Scholar 

  19. Spooner, R. I. W., Thomson, A., Hall, J., Morris, R. G. M. & Salter, S. H. The Atlantis platform: a new design and further developments of Buresova's on-demand platform for the water maze. Learn. Mem. 1, 203–211 ( 1994).

    CAS  PubMed  Google Scholar 

  20. Mansuy, I. M., Mayford, M., Jacob, B., Kandel, E. R. & Bach, M. E. Restricted and regulated overexpression reveals calcineurin as a key component in the transition from short-term to long-term memory. Cell 92, 39–49 (1998).

    Article  CAS  Google Scholar 

  21. McGaugh, J. L. Drug facilitation of learning and memory. Annu. Rev. Pharmacol. 13, 229–241 ( 1973).

    Article  CAS  Google Scholar 

  22. McGaugh, J. & Gold, P. E. in Neural Mechanisms of Learning and Memory (eds. Bennett, E. L. & Rosenzweig, M. R.) 549– 560 (MIT Press, Cambridge, Massachusetts, 1976).

    Google Scholar 

  23. Bohbot, V., Otahal, P., Liu, Z., Nadel, L. & Bures, J. Electroconvulsive shock and lidocaine reveal rapid consolidation of spatial working memory in the watermaze. Proc. Natl. Acad. Sci. USA 93, 4016–4019 ( 1996).

    Article  CAS  Google Scholar 

  24. Izquierdo, I. et al. Mechanisms for memory types differ. Nature 393, 635–636 (1998).

    Article  CAS  Google Scholar 

  25. McClelland, J. L., McNaughton, B. L. & O'Reilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419–457 (1995).

    Article  Google Scholar 

  26. Turrigiano, G. G. & Nelson, S. B. Thinking globally, acting locally: AMPA receptor turnover and synaptic strength. Neuron 21, 933–934 ( 1998).

    Article  CAS  Google Scholar 

  27. O'Brien, R. J. et al. Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron 21, 1067–1078 (1998).

    Article  CAS  Google Scholar 

  28. Schwartz, W. J. et al. Metabolic mapping of functional activity in the hypothalamo-neurohypophyseal system of the rat. Science 205, 723– 725 (1979).

    Article  CAS  Google Scholar 

  29. Crane, P. D. et al. Dose dependent reduction of glucose utilization by pentobarbital in rat brain. Stroke 9, 12– 18 (1978).

    Article  CAS  Google Scholar 

  30. Astrup, J., Sorenson, P. M. & Sorenson, H. R. Oxygen and glucose consumption related to Na+–K+ transport in canine brain. Stroke 12, 726–730 ( 1981).

    Article  CAS  Google Scholar 

  31. Moser, M. B., Moser, E. I., Forrest, E., Andersen, P. & Morris, R. G. M. Spatial-learning with a minislab in the dorsal hippocampus. Proc. Natl. Acad. Sci. USA 92, 9697–9701 (1995).

    Article  CAS  Google Scholar 

  32. Everitt, B. J. & Robbins, T. W. Central cholinergic systems and cognition. Annu. Rev. Psychol. 48, 649–684 (1997).

    Article  CAS  Google Scholar 

  33. Buszaki, G. Two-stage model of memory-trace formation: a role for 'noisy' brain states. Neuroscience 31, 551–570 (1989).

    Article  Google Scholar 

  34. Hasselmo, M. E. Neuromodulation and cortical function: modeling the physiological basis of behavior. Behav. Brain Res. 67, 1– 27 (1994).

    Article  Google Scholar 

  35. Staubli, U., Thibault, O., DiLorenzo, M. & Lynch, G. Antagonism of NMDA receptors impairs acquisition but not retention of olfactory memory. Behav. Neurosci. 103, 54– 60 (1989).

    Article  CAS  Google Scholar 

  36. Steele, R. J. & Morris, R. G. M. Delay-dependent impairment of a matching to place task with chronic and intrahippocampal infusion of the NMDA antagonist D-AP5. Hippocampus 9, 118–136 (1999).

    Article  CAS  Google Scholar 

  37. Packard, M. G., Hirsh, R. & White, N. M. Differential effects of fornix and caudate nucleus lesions on two radial maze tasks: Evidence for multiple memory systems. J. Neurosci. 9, 1465–1472 (1989).

    Article  CAS  Google Scholar 

  38. Izquierdo, I. & Medina, J. H. Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Neurobiol. Learn. Mem. 68, 285–316 (1997).

    Article  CAS  Google Scholar 

  39. Bontempi, B., Laurent-Demir, C., Destrade, C. & Jaffard, R. Time-dependent reorganization of brain circuitry underlying long-term memory storage. Nature 400, 671– 675 (1999).

    Article  CAS  Google Scholar 

  40. Winocur, G. Anterograde and retrograde amnesia in rats with dorsal hippocampal or dorsomedial thalamic lesions. Behav. Brain Res. 38, 145–154 (1990).

    Article  CAS  Google Scholar 

  41. Zola-Morgan, S. & Squire, L. R. The primate hippocampal formation: Evidence for a time-limited role in memory storage. Science 250, 288–290 (1990).

    Article  CAS  Google Scholar 

  42. Kim, J. J. & Fanselow, M. S. Modality-specific retrograde amnesia of fear. Science 256, 675– 677 (1992).

    Article  CAS  Google Scholar 

  43. Ramos, J. M. J. Retrograde amnesia for spatial information: a dissociation between intra- and extra-maze cues following hippocampal lesions in rats. Eur. J. Neurosci. 10, 3295–3301 (1998).

    Article  CAS  Google Scholar 

  44. Reed, J. M. & Squire, L. R. Retrograde amnesia for facts and events: findings from four new cases. J. Neurosci. 18, 3943–3954 (1998).

    Article  CAS  Google Scholar 

  45. Anagnosteras, S. G., Maren, S. & Fanselow, M. S. Temporally graded retrograde amnesia of contextual fear after hippocampal damage in rats: within-subjects examination. J. Neurosci. 19, 1106–1114 (1999).

    Article  Google Scholar 

  46. Nadel, L. & Moscovitch, M. Memory consolidation, retrograde amnesia and the hippocampal complex. Curr. Opin. Neurobiol. 7, 217–227 (1997).

    Article  CAS  Google Scholar 

  47. Frackowiak, R. S. J., Friston, K. J., Frith, C. D., Dolan, R. J. & Mazziotta, J. C. Human Brain Function (Academic, London, 1997).

    Google Scholar 

  48. Nyberg, L., McIntosh, A. R., Houle, S., Nillson, L.-G. & Tulving, E. Activation of medial temporal structures during episodic memory retrieval. Nature 380, 714–717 (1996).

    Article  Google Scholar 

  49. Dolan, R. J. & Fletcher, P. C. Dissociating prefrontal and hippocampal function in episodic memory encoding. Nature 388, 582–585 (1997).

    Article  CAS  Google Scholar 

  50. Lepage, M., Habib, R. & Tulving, E. Hippocampal PET Activations of memory encoding and retrieval: the HIPER model. Hippocampus 8, 313 –322 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by an MRC Programme Grant to R.G.M.M., by grants from CNRS, The Royal Society and Fondation Cino del Duca to J.M. and by a Wellcome Trust grant to J.McC. We are grateful to Darryl Schoepp of Lilly USA for supplying LY326325 and to Jane Knox and Patrick Spooner for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.G.M. Morris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riedel, G., Micheau, J., Lam, A. et al. Reversible neural inactivation reveals hippocampal participation in several memory processes. Nat Neurosci 2, 898–905 (1999). https://doi.org/10.1038/13202

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/13202

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing