Skip to main content
Log in

Augmentation of Auditory N1 in Children with Fragile X Syndrome

  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

We compared the N1 responses of the auditory event-related brain potentials (ERPs) in school-aged children with fragile X syndrome to age-matched controls in order to assess auditory processing. Event-related potentials to non-attended standard and deviant tone stimuli were recorded with EEG electrodes and here the standard tones were analysed. The amplitude of the N1 component to standard tones was significantly larger in children with fragile X syndrome than in control children. In addition, the global field power maximum of ERP corresponding to the N2 component was significantly (p<0.05) larger in fragile X children than in controls. The N2 scalp distribution in children with fragile X syndrome appeared more frontal than that in controls. Furthermore, the fragile X children exhibited no habituation of N1 and an absence of N2 sensitization for repeated tones. Increased responsiveness observed in the N1 evoked potential together with abnormal habituation of auditory responses in childhood may indicate increased sensory sensitivity for auditory stimuli in fragile X syndrome. The data, though very limited, suggest that stimulus processing in the auditory afferent pathways and/or in the corresponding cortical receiving areas is abnormal in children with fragile X syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Backes, M., Genc, B., Schreck, J., Doerfler, W., Lehmkuhl, G. and von Gontard, A. Cognitive and behavioral profile of fragile X boys: correlations to molecular data. Am. J. Med. Genet., 2000, 95:150–156.

    Google Scholar 

  • de Vries, B.B., Halley, D.J., Oostra, B.A. and Niermeijer, M.F. The fragile X syndrome. J. Med. Genet. 1998; 35: 578–89.

    Google Scholar 

  • Chen, L. and Toth, M. Fragile X mice develop sensory hyperreactivity to auditory stimuli. Neurosci., 2001, 103: 1043–1050.

    Google Scholar 

  • Ferri, R., Musumeci, S.A., Elia, M., Del Gracco, S., Scuderi, S. and Bergonzi, P. Bit-mapped somatosensory evoked potentials in the fragile X syndrome. Neurophysiol. Clin., 1994, 24: 413–426.

    Google Scholar 

  • Fruhstorfer, H., Soveri, P. and Järvilehto, T. Short-term habituation of the auditory evoked response in man. Electroenceph. Clin. Neurophysiol., 1970, 28: 153–161.

    Google Scholar 

  • Hagerman, R.J., Hills, J., Scharfenaker, S. and Lewis, H. Fragile X syndrome and selective mutism. Am. J. Med. Genet., 1999, 83: 313–317.

    Google Scholar 

  • Hari, R., Kaila, K., Katila, T., Tuomisto, T. and Varpula, T. Interstimulus-interval depence of the auditory vertex response and its magnetic counterpart: Implications for their neural generation. Electroenceph. clin. Neurophysiol., 1982, 54: 561–569.

    Google Scholar 

  • Hjalgrim, H., Jacobsen, T.B., Nø rgaard, K., Lou, H.C., Brø ndum-Nielsen, K. and Jonassen, O. Frontal-subcortical hypofunction in the fragile X syndrome. Am. J. Med. Genet., 1999, 83: 140–141.

    Google Scholar 

  • Irwin, S.A., Swain, R.A., Christmon, C.A., Chakravarti, A., Weiler, I.J. and Greenough, W.T. Evidence for altered Fragile-X mental retardation protein expression in response to behavioral stimulation. Neurobiol. Learn. Mem., 2000, 74: 87–93.

    Google Scholar 

  • Javitt, D.C., Steinschneider, M., Schroeder, C.E. and Arezzo, J.C. Role of cortical N-methyl-D-aspartate receptors in auditory sensory memory and mismatch negativity generation: implications for schizophrenia. Proc. Natl. Acad. Sci. USA, 1996, 93: 11962–11967.

    Google Scholar 

  • Karhu, J., Herrgard, E., Pääkkönen, A., Luoma, L. Airaksinen, E. and Partanen, J. Dual cerebral processing of elementary auditory input in children. Neuroreport, 1997, 8: 1327–1330.

    Google Scholar 

  • Lachiewicz, A.M., Spiridigliozzi, G.A., Gullion, C.M., Ransford, S.N. and Rao, K. Aberrant behaviors of young boys with fragile X syndrome. Am. J. Ment. Retard., 1994, 98: 567–579.

    Google Scholar 

  • Lehman, D. and Skrandies, W. Segmentation of EEG potential fields. Electroenceph. Clin. Neurophysiol., 1980, 38: 27–32.

    Google Scholar 

  • Meador, K.J. Cholinergic, serotonergic, and GABAergic effects on the ERP. Electroenceph. Clin. Neurophysiol. Suppl., 1995, 44: 151–155.

    Google Scholar 

  • Menon, V., Kwon, H., Eliez, S., Taylor, A.K. and Reiss, A.L. Functional brain activation during cognition is related to FMR1 gene expression. Brain Res., 2000, 877: 367–370.

    Google Scholar 

  • Merenstein, S.A., Sobesky, W.E., Taylor, A.K., Riddle, J.E., Tran, H.X. and Hagerman, R.J. Molecular-clinical correlations in males with an expanded FMR1 mutation. Am. J. Med. Genet., 1996, 64: 388–394.

    Google Scholar 

  • Miller, L.J., McIntosh, D.N., McGrath, J., Shyu, V., Lampe, M., Taylor, A.K., Tassone, F., Neitzel, K., Stackhouse, T. and Hagerman, R.J. Electrodermal responses to sensory stimuli in individuals with fragile X syndrome: a preliminary report. Am. J. Med. Genet., 1999, 83: 268–279.

    Google Scholar 

  • Musumeci, S.A., Elia, M., Ferri, R., Scuderi, S. and Del Gracco, S. Evoked spikes and giant somatosensory evoked potentials in a patient with fragile X syndrome. Ital. J. Neurol. Sci., 1994, 15: 365–368.

    Google Scholar 

  • Musumeci, S.A., Ferri, R., Colognola, R.M., Neri, G., Sanfilippo, S. and Bergonzi, P. Prevalence of a novel epileptogenic EEG pattern in the Martin-Bell syndrome. Am. J. Med. Genet., 1988, 30: 207–212.

    Google Scholar 

  • Musumeci, S.A., Hagerman, R.J., Ferri, R., Bosco, P., Dalla Bernardina, B., Tassinari, C.A., De Sarro, G.B. and Elia, M. Epilepsy and EEG findings in males with fragile X syndrome. Epilepsia, 1999, 40: 1092–1099.

    Google Scholar 

  • Musumeci, S.A., Bosco, P., Calabrese, G., Bakker, C., De Sarro, G.B., Elia, M., Ferri, R. and Oostra, B.A. Audiogenic seizures susceptibility in transgenic mice with fragile X syndrome. Epilepsia, 2000, 41: 19–23.

    Google Scholar 

  • Näätänen, R. and Picton, T. The N1 wave of the human electric and magnetic response to sound:Areview and an analysis of the component structure. Psychophysiology, 1987, 24: 375–425.

    Google Scholar 

  • O'´Donnell, W.T. and Warren, S.T. A decade of molecular studies of fragile X syndrome. Annu. Rev. Neurosci., 2002, 25: 315–338.

    Google Scholar 

  • Picton, T.W., Hillyard, S.A., Krausz, H.I. and Galambos, R. Human auditory evoked potentials. I. Evaluation of components. Electroenceph. Clin. Neurophysiol., 1974, 36: 179–190.

    Google Scholar 

  • Pieretti, M., Zhang, F.P., Fu, Y.H., Warren, S.T., Oostra, B.A., Caskey, C.T. and Nelson, D.L. Absence of expression of the FMR-1gene in fragileXsyndrome. Cell, 1991, 66: 817–822.

    Google Scholar 

  • Ragazzoni, A., Ferri, R., Di Russo, F., Del Gracco, S., Barcaro, U. and Navona, C. Giant somatosensory evoked potentials in different clinical conditions: scalp topography and dipole source analysis. Electroenceph. Clin. Neurophysiol. Suppl., 1999, 49: 81–89.

    Google Scholar 

  • Reiss, A.L., Lee, J. and Feund, L. Neuroanatomy of fragile X syndrome: The temporal lobe. Neurology, 1994, 44: 1317–1324.

    Google Scholar 

  • Reiss, A.L., Abrams, M.T., Greenlaw, R., Feund, L. and Denckla, M.B. Neurodevelopmental effects of the FMR-1 full mutation in humans. Nat. Med., 1995, 1: 159–167.

    Google Scholar 

  • Rojas, D.C., Benkers, T.L., Rogers, S.J., Teale, P.D., Reite, M.L. and Hagerman, R.J. Auditory evoked magnetic fields in adults with fragile X syndrome. Neuroreport, 2001, 12: 2573–2576.

    Google Scholar 

  • Sabaratnam, M., Vroegop, P.G. and Gangadharan, S.K. Epilepsy and EEG findings in 18 males with fragile X syndrome. Seizure, 2001, 10: 60–63.

    Google Scholar 

  • Sokolov, E.N. Higher nervous functions: The orienting reflex. Ann. Rev. Physiol., 1963, 26: 545–580.

    Google Scholar 

  • St. Clair, D.M., Blackwood, D.H., Oliver, C.J. and Dickens, P. P3 abnormality in fragile X syndrome. Biol. Psychiatr., 1987, 22: 303–312.

    Google Scholar 

  • Swick, D., Pineda, J.A. and Foote, S.L. Effects of systemic clonidine on auditory event-related potentials in squirrel monkeys. Brain Res. Bull., 1994, 33: 79–86.

    Google Scholar 

  • Tarkka, I.M., Karhu, J., Kuikka, J., Pääkkönen, A., Bergström, K., Partanen, J. and Tiihonen, J. Altered frontal lobe function suggested by source analysis of event-related potentials in impulsive violent alcoholics. Alcohol Alcoholism, 2001, 36(4): 323–328.

    Google Scholar 

  • Todd, P.K. and Mack, K.J. Sensory stimulation increases cortical expression of the fragileXmental retardation protein in vivo. Brain Res. Mol. Brain Res., 2000, 80: 17–25.

    Google Scholar 

  • Turner, G., Webb, T., Wake, S. and Robinson, H. Prevalence of fragileXsyndrome. Am.J. Med. Genet., 1996, 64: 196–197.

    Google Scholar 

  • Verheij, C., Bakker, C.E., de Graaff, E., Keulemans, J., Willemsen, R., Verkerk, A.J, Galjaard, H., Reuser, A.J., Hoogeveen, A.T. and Oostra, B.A. Characterization and localization of the FMR-1 gene product associated with fragile X syndrome. Nature, 1993, 363: 722–724.

    Google Scholar 

  • Verkerk, A.J., Pieretti, M., Sutcliffe, S., Fu, Y.H., Kuhl, D.P., Pizzuti, A., Reiner, O., Richards, S., Victoria, M.F. and Zhang, F.P. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell, 1991, 65: 905–914.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castrén, M., Pääkkönen, A., Tarkka, I.M. et al. Augmentation of Auditory N1 in Children with Fragile X Syndrome. Brain Topogr 15, 165–171 (2003). https://doi.org/10.1023/A:1022606200636

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022606200636

Navigation