Skip to main content
Log in

Apoptosis in Alzheimer's disease—an update

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Alzheimer's disease (AD) is the most common human neurodegenerative disorder characterized by the progressive deterioration of cognition and memory in association with the presence of senile plaques, neurofibrillary tangles, and massive loss of neurons. Most cases of AD are late-onset and sporadic, but in some cases the disease is inherited as an autosomal dominant trait. Four different genes, the amyloid precursor protein, apolipoprotein E, and presenilins 1 and 2 have been implicated in the etiology of familial AD. It is now generally accepted that massive neuronal death due to apoptosis is a commmon characteristic in the brains of patients suffering from neurodegenerative diseases, and apoptotic cell death has been found in neurons and glial cells in AD. This review summarizes the current findings regarding the evidence for apoptosis in AD and discusses the possible involvement of apoptosis-regulating factors in the pathology of AD. Modification of the apoptotic cascade could be considered as a primary therapeutic strategy for the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Katzman R. Alzheimer's disease. New Engl J Med 1986; 314: 964–973.

    Google Scholar 

  2. Price DL, Sisodia SS. Mutant genes in familial Alzheimer's disease and transgenic models. Annu Rev Neurosci 1998; 21: 479–505.

    Google Scholar 

  3. Masliah E, Terry RD, De Teresa RM, Hansen LA. Immunohistochemical quantification of the synapse-related protein synaptophysin in Alzheimer disease. Neurosci Lett 1989; 103: 234–239.

    Google Scholar 

  4. Masliah E, Terry RD, Alford M, DeTeresa R, Hansen LA. Cortical and subcortical patterns of synaptophysinlike immunoreactivity in Alzheimer's disease. Am J Pathol 1991; 138: 235–246.

    Google Scholar 

  5. Terry RD, Masliah E, Salmon DP, et al. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairement. Ann Neurol 1991; 30: 572–580.

    Google Scholar 

  6. Barinaga M. Is apoptosi key in Alzheimer's disease? Science 1998; 281: 1303–1304.

    Google Scholar 

  7. Su JH, Anderson AJ, Cummings BJ, Cotman CW. Immunohistochemical evidence for apoptosis in Alzheimer's disease. NeuroReport 1994; 5: 2529–2533.

    Google Scholar 

  8. Lassmann H, Bancher C, Breitschopf H, et al. Cell death in Alzheimer's disease evaluated by DNA fragmentation in situ. Acta Neuropathol 1995; 89: 35–41.

    Google Scholar 

  9. Smale G, Nichols NR, Brady DR, Finch CE, Horton Jr WE. Evidence for apoptotic cell death in Alzheimer's disease. Exp Neurol 1995; 133: 225–230.

    Google Scholar 

  10. Anderson AJ, Su JH, Cotman CW.DNAdamage and apoptosis in Alzheimer's disease: Colocalization with c-Jun immunoreactivity, relationship to brain area, and effect of postmortem delay. J Neurosci 1996; 16: 1710–1719.

    Google Scholar 

  11. Troncoso JC, Sukhov RR, Kawas CH, Koliatsos VE. In situ labeling of dying cortical neurons in normal aging and in Alzheimer's disease: correlations with senile plaques and disease progression. J Neuropathol Exp Med 1996; 55: 1134–1142.

    Google Scholar 

  12. Charriaut-Marlangue C, Ben-Ari Y. A cautionary note on the use of the TUNEL stain to determine apoptosis. NeuroReport 1995; 7: 61–64.

    Google Scholar 

  13. Grasl-Kraupp B, Ruttkay-Nedecky B, Koudelka H, Bukowska K, Bursch W, Schulte-Hermann R. In situ detection of fragmentedDNA( TUNELassay) fails to discriminate among apoptosis, necrosis, and autolytic cell death: a caution note. Hepatol 1995; 21: 1465–1468.

    Google Scholar 

  14. Savits SI, Rosenbaum DM. Apoptosis in neurological disease. Neurosurgery 1998; 42: 555–574.

    Google Scholar 

  15. Perry G, Nunomura A, Smith MA. A suicide note from Alzheimer disease neurons. Nat Med 1998; 4: 897–898.

    Google Scholar 

  16. Perry G, Nunomura A. Apoptosis and Alzheimer's disease. Science 1998; 282: 1268.

    Google Scholar 

  17. Yuan J, Horvits HR. The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development 1992; 116: 309–320.

    Google Scholar 

  18. Yuan J, Shaham S, Ledoux S, Ellis HM, Horvits HR. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1¯-converting enzyme. Cell 1993; 75: 641–652.

    Google Scholar 

  19. Hengartner MO, Horvits HR. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian protooncogene bcl-2. Cell 1994; 76: 665–676.

    Google Scholar 

  20. Cerretti DP, Kozlosky CJ, Mosley B, et al. Molecular cloning of the interleukin-1–¯ converting enzyme. Science 1992; 256: 97–100.

    Google Scholar 

  21. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4 participates in cytochrome c-dependent activation of caspase-3. Cell 1997; 90: 405–413.

    Google Scholar 

  22. Pan GH, Orourke K, Dixit VM. Caspase-9, Bcl-XL, and Apaf-1 form a ternary complex. J Biol Chem 1998; 273: 5841–5845.

    Google Scholar 

  23. White E. Life, death, and the pursuit of apoptosis. Genes & Dev 1996; 10: 1–15.

    Google Scholar 

  24. Alnemri ES, Livingston DJ, Nicholson DW, et al. Human ICE/CED-3 protease nomenclature. Cell 1996; 87: 171.

    Google Scholar 

  25. Hacker G, Vaux DL. A sticky business. Curr Biol 1995; 5: 622–624.

    Google Scholar 

  26. Kluck RM, Bossi-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 1997; 275: 1132–1136.

    Google Scholar 

  27. Yang J, Liu X, Bhalla K, et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 1997; 275: 1129–1132.

    Google Scholar 

  28. Kitamura Y, Shimohama S, Kamoshima W, et al. Alteration of proteins regulating apoptosis, Bcl-2, Bcl-x, Bax, Bak, Bad, ICH-1 and CPP32, in Alzheimer's disease. Brain Res 1998; 780: 260–269.

    Google Scholar 

  29. Su JH, Deng G, Cotman CW. Bax protein expression is increased in Alzheimer's brain: correlations with DNA damage, Bcl-2 expression and brain pathology. J Neuropathol Exp Neurol 1997; 56: 86–93.

    Google Scholar 

  30. Tanzi RE. Caspases land on APP: One small step for apoptosis, one giant leap for amyloidosis. Nat Neurosci 1999; 2: 585–586.

    Google Scholar 

  31. Kim TW, Pettingel WH, Jung YK, Kovacs DM, Tanzi RE. Alternative cleavage of Alzheimer-associated presenilins during apoptosis by a caspase-3 family proteases. Science 1997; 277: 373–376.

    Google Scholar 

  32. Barnes NY, Li L, Yoshikawa K, Schwartz LM, Oppenheim RW, Milligan CE. Increased production of amyloid precursor protein provides a substrate for caspase-3 in dying motorneurons. J Neurosci 1998; 18: 5869–5880.

    Google Scholar 

  33. Yang X, Chang HY, Baltimore D. Autoproteolytic activation of pro-caspases by oligomerization. Mol Cell 1998; 1: 319–325.

    Google Scholar 

  34. Masliah E, Mallory M, Alford M, Tanaka S, Hansen LA. Caspase dependent DNA fragmentation might be associated with excitotoxicity in Alzheimer disease. J Neuropatho Exp Neurol 1998; 57: 1041–1052.

    Google Scholar 

  35. Krajewski M, Wang H-G, Krajewski S, et al. Immunohistochemical analysis of in vivo patterns of expression of CPP32 (caspase 3), a cell death protease. Cancer Res 1997; 57: 1605–1613.

    Google Scholar 

  36. Shimohama S, Tanino H, Fujimoto S. Changes in caspase expression in Alzheimer's disease: Comparison with development and aging. Biochem Biophys Res Commun 1999; 256: 381–384.

    Google Scholar 

  37. Burek MJ, Oppenheim RW. Programmed cell death in the developing nervous system. Brain Pathol 1996; 6: 427–446.

    Google Scholar 

  38. Shimohama S, Fujimoto S, Sumida Y, Tanino H. Differential expression of rat brain Bcl-2 family proteins in development and aging. Biochem Biophys Res Commun 1998; 252: 92–96.

    Google Scholar 

  39. Ko LJ, Prives C. p53: puzzle and paradigm. Genes Dev 1996; 14

  40. Kitamura Y, Shimohama S, Kamoshima W, Matsuoka Y, Nomura Y, Taniguchi T. Changes of p53 in the brains of patients with Alzheimer's disease. Biochem Biophys Res Commun 1997; 232: 418–421.

    Google Scholar 

  41. McShea A, Harris PLR, Webster KR, Wahl AF, Smith MA. Abnormal expression of the cell cycle regulators p16 andCDK4 in Alzheimer's disease. Am J Pathol 1997; 150: 1933–1939.

    Google Scholar 

  42. O'Neill LAJ, Kaltschmidt C. NF-·B: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci 1997; 20: 252–258.

    Google Scholar 

  43. Herdegen T, Skene P, Bahr M. The c-Jun transcription factorbipotential mediator of neuronal death, survival and regeneration. Trends Neurosci 1997; 20: 227–231.

    Google Scholar 

  44. Yang DD, Kuan C-Y, Whitmarsh AJ, et al. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 1997; 389: 865–870.

    Google Scholar 

  45. Kitamura Y, Shimohama S, Ota T, Matsuoka Y, Nomura Y, Taniguchi T. alteration of transcription factors NF-·B and STAT1 in Alzheimer's disease brains. Neurosci Lett 1997; 237: 17–20.

    Google Scholar 

  46. McGeer PL, McGeer EG. The inflammatory response system of brain: Implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Rev 1995; 21: 195–218.

    Google Scholar 

  47. Smith MA, Harris PLR, Sayre LM, Beckman JS, Perry G. Widespread peroxynitrite-mediated damage in Alzheimer's disease. J Neurosci 1997; 17: 2653–2657.

    Google Scholar 

  48. Kitamura Y, Taniguchi T, Shimohama S. Apoptotic cell death in neurons and glial cells: Implications for Alzheimer's disease. Jpn J Pharmacol 1999; 79: 1–5.

    Google Scholar 

  49. Pasinetti GM, Aisen PS. Cyclooxygenase-2 expression is increased in frontal cortex of Alzheimer's disease brain. Neuroscience 1998; 87: 319–324.

    Google Scholar 

  50. Kitamura Y, Shimohama S, Koike H, et al. Increased expression of cyclooxygenases and peroxisome proliferator-activated receptor-° in Alzheimer's disease brains. Biochem Biophys Res Commun 1999; 254: 582–586.

    Google Scholar 

  51. Rogers J, Kirby LC, Hempelman SR, et al. Clinical trial of indomethacin in Alzheimer's disease. Neurology 1993; 43: 1609–1611.

    Google Scholar 

  52. Selkoe DJ. Cell biology of the amyloid beta-protein precursor and the mechanism of Alzheimer's disease. Ann Rev Cell Biol 1994; 10: 373–403.

    Google Scholar 

  53. LaFela FM, Tinkle BT, Bieberich CJ, Haudenschild CC, Jay G. The Alzheimer's A beta peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nat Genet 1995; 9: 21–30.

    Google Scholar 

  54. Masliah E, Sisk A, Mallory M, Mucke L, Schenk D, Games D. Comparison of neurodegenerative pathology in transgenic mice overexpressing V717F ¯-amyloid precursor protein and Alzheimer's disease. J Neurosci 1996; 16: 5795–5811.

    Google Scholar 

  55. Zhao B, Chrest FJ, Horton Jr. WE, Sisodia SS, Kusiak JW. Expression of mutant amyloid precursor proteins induces apoptosis in PC12 cells. J Neurosci Res 1997; 47: 253–263.

    Google Scholar 

  56. Nishimoto I, Okamoto T, Giambarella U, Iwatsubo T. Apoptosis in neurodegenerative disease. Adv Pharmacol 1997; 41: 337–368.

    Google Scholar 

  57. Forloni G, Chiesa R, Smiroldo S, et al. Apoptosis mediated neurotoxicity induced by chronic application of ¯ amyloid fragment 25–35. NeuroReport 1993; 4: 523–526.

    Google Scholar 

  58. Loo DT, Copani A, Pike CJ, Whittemore ER, Walencewicz AJ, CotmanCW. Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc Natl Acad Sci USA 1993; 90: 7951–7955.

    Google Scholar 

  59. Gschwind M, Huber G. Apoptotic cell death induced by ¯-amyloid peptide is cell type dependent. J Neurochem 1995; 65: 292–300.

    Google Scholar 

  60. Behl C, Davis J, Klier FG, Schubert D. Amyloid ¯ peptide induces necrosis rather than apoptosis. Brain Res 1994; 645: 253–264.

    Google Scholar 

  61. Paradis E, Douillard H, Koutroumanis M, Goodyer C, LeBlanc A. Amyloid ¯ peptide of Alzheimer's disease downregulates Bcl-2 and upregulates Bax expression in human neurons. J Neurosci 1996; 16: 7533–7539.

    Google Scholar 

  62. Mattson MP, Cheng B, Davis D, Bryant K, Lieberburg I, Rydel RE. ¯-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci 1992; 12: 376–389.

    Google Scholar 

  63. Behl C, Davis J, Cole G, Schubert D. Vitamin E protects nerve cells from amyloid ¯ protein toxicity. Biochem Biophys Res Commun 1992; 186: 944–950.

    Google Scholar 

  64. Behl C, Davis J, Lesley R, Schubert D. Hydrogen peroxide mediates amyloid ¯ protein toxicity. Cell 1994; 77: 817–827.

    Google Scholar 

  65. Le WD, Colom LV, Wie WJ, Smith RG, Alexianu M, Appel SH. Cell death induced by ¯-amyloid 1–40 in MES23.5 hybrid clone: the role of nitric oxide and NMDA-gated channel activation leading to apoptosis. Brain Res 1995; 686: 49–60.

    Google Scholar 

  66. Rabizadeh S, Bitler CM, Butcher LL, Bredesen DE. Expression of the low affinity nerve growth factor receptor enhances ¯-amyloid peptide toxicity. Proc Natl Acad Sci USA 1994; 91: 10703–10706.

    Google Scholar 

  67. Mattson MP, Guo Q, Furukawa K, Pedersen WA. Presenilins, the endoplasmic reticulum, and neuronal apoptosis in Alzheimer's disease. J Neurochem 1998; 70: 1–14.

    Google Scholar 

  68. Borchelt DR, Thinakaran G, Eckman CB, et al. Familial Alzheimer's disease-linked presenilin 1 variants elevate A¯1–42/1–40 ratio in vitro and in vivo. Neuron 1996; 17: 1005–1013.

    Google Scholar 

  69. Duff K, Eckman C, Zehr C, et al. Increased amyloid-¯42 (43) in brains of mice expressing mutant presenilin 1. Nature 1996; 383: 710–713.

    Google Scholar 

  70. Scheuner D, Eckman C, Jensen M, et al. The amyloid ¯ protein deposited in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nat Med 1996; 2: 864–870.

    Google Scholar 

  71. Tomita T, Maruyama K, Saido TC, et al. The presenilin 2 mutation (N141I) linked to familial Alzheimer's disease (Volga German families) increases the secretion of amyloid ¯ protein ending at the 42nd (or 43rd) residue. Proc Natl Acad Sci USA 1997; 94: 2025–2030.

    Google Scholar 

  72. Vito P, Wolozin B, Ganjei JK, Iwasaki K, Lacana ED, Adamio L. Requirement of the familial Alzheimer's disease gene PS2 for apoptosis. Opposing effect of ALG-3. J Biol Chem 1996; 271: 31025–31028.

    Google Scholar 

  73. Deng G, Pike CJ, Cotman CW. Alzheimer-associated presenilin-2 confers increased sensitivity to apoptosis in PC12 cells. FEBS Lett 1996; 397: 50–54.

    Google Scholar 

  74. Wolozin B, Iwasaki K, Vito P, et al. Participation of presenilin 2 in apoptosis: enhanced basal activity conferred by an Alzheimer mutation. Science 1996; 274: 1710–1713.

    Google Scholar 

  75. Guo Q, Furukawa K, Sopher BL, et al. Alzheimer's PS-1 mutation perturbs calcium homeostasis and sensitizes PC12 cells to death induced by amyloid beta-peptide. NeuroReport 1996; 8: 379–383.

    Google Scholar 

  76. Guo Q, Sopher BL, Pham DG, et al. Alzheimer's presenilin mutation sensitizes neural cells to apoptosis induced by trophic factor withdrawal and amyloid ¯-peptide: involvement of calcium and oxyradicals. J Neurosci 1997; 17: 4212–4222.

    Google Scholar 

  77. Guo Q, Fu W, Sopher BL, et al. Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice. Nat Med 1999; 5: 101–106.

    Google Scholar 

  78. Bursztajn S, DeSouza R, McPhie DL, et al. Overexpression in neurons of human presenilin-1 or a presenilin-1 familial Alzheimer disease mutant does not enhance apoptosis. J Neurosci 1998; 18: 9790–9799.

    Google Scholar 

  79. Gervais FG, Xu D, Robertson GS, et al. Involvement of caspases in proteolytic cleavage of Alzheimer's amyloid-¯ precursor protein and amyloidogenic A¯ peptide formation. Cell 1999; 97: 395–406.

    Google Scholar 

  80. Levitan D, Doyle TG, Brousseau D, et al. Assessment of normal and mutant human presenilin function in Caenorhabditis elegans. Proc Natl Acad Sci USA 1996; 93: 14940–14944.

    Google Scholar 

  81. Scheuner D, Eckman C, Jensen M, et al. Secreted amyloid betaprotein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nat Med 1996; 2: 864–870.

    Google Scholar 

  82. Zhou J, Liyanage U, Medina M, et al. Presenilin 1 interaction in the brain with a novel member of the Armadillo family. NeuroReport 1997; 8: 2085–2090.

    Google Scholar 

  83. Murayama M, Tanaka S, Palacino J, et al. Direct association of presenilin-1 with beta-catenin. FEBS Lett 1998; 433: 73–77.

    Google Scholar 

  84. Takashima A, Murayama M, Murayama O, et al. Presenilin 1 associates with glycogen synthase kanase-3 beta and its substrate tau. Proc Natl Acad Sci USA 1998; 95: 9637–9641.

    Google Scholar 

  85. Yu G, Chen F, Levesque G, et al. The presenilin 1 protein is a component of a high molecular weight intracellular complex that contains beta-catenin. J Biol Chem 1998; 273: 16470–16475.

    Google Scholar 

  86. Zhang Z, Hartmann H, Do VM, et al. Destabilization of beta-catenin by mutations in presenilin-1 potentiates neuronal apoptosis. Nature 1998; 395: 698–702.

    Google Scholar 

  87. Nishimura M, Yu G, Levesque G, et al. Presenilin mutations associated with Alzheimer disease cause defective intracellular trafficking of beta-catenin, a component of the presenilin protein complex. Nat Med 1999; 5: 164–169.

    Google Scholar 

  88. Weihl CC, Ghadge GD, Kennedy SG, Hay N, Miller RJ, Roos RP. Mutant presenilin-1 induces apoptosis and downregulates Akt/PKB. J Neurosci 1999; 19: 5360–5369.

    Google Scholar 

  89. Dudek H, Datta SR, Franke TF, et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 1997; 275: 661–665.

    Google Scholar 

  90. Kennedy SG, Wagner AJ, Conzen SD, et al. The PI3–kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev 1997; 11: 701–713.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimohama, S. Apoptosis in Alzheimer's disease—an update. Apoptosis 5, 9–16 (2000). https://doi.org/10.1023/A:1009625323388

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009625323388

Navigation