Skip to main content
Log in

Robust Spectrotemporal Reverse Correlation for the Auditory System: Optimizing Stimulus Design

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The spectrotemporal receptive field (STRF) is a functional descriptor of the linear processing of time-varying acoustic spectra by the auditory system. By cross-correlating sustained neuronal activity with the dynamic spectrum of a spectrotemporally rich stimulus ensemble, one obtains an estimate of the STRF. In this article, the relationship between the spectrotemporal structure of any given stimulus and the quality of the STRF estimate is explored and exploited. Invoking the Fourier theorem, arbitrary dynamic spectra are described as sums of basic sinusoidal components—that is, moving ripples. Accurate estimation is found to be especially reliant on the prominence of components whose spectral and temporal characteristics are of relevance to the auditory locus under study and is sensitive to the phase relationships between components with identical temporal signatures. These and other observations have guided the development and use of stimuli with deterministic dynamic spectra composed of the superposition of many temporally orthogonal moving ripples having a restricted, relevant range of spectral scales and temporal rates. The method, termed sum-of-ripples, is similar in spirit to the white-noise approach butenjoys the same practical advantages—which equate to faster and moreaccurate estimation—attributable to the time-domain sum-of-sinusoidsmethod previously employed in vision research. Application of the methodis exemplified with both modeled data and experimental data from ferretprimary auditory cortex (AI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aertsen A, Johannesma P (1980) Spectro-temporal receptive fields of auditory neurons in the grassfrog. I. Characterization of tonal and natural stimuli. Biol. Cybernetics 38:223-234.

    Google Scholar 

  • Aertsen A, Johannesma P (1981a) A comparison of the spectro-temporal sensitivity of auditory neurons to tonal and natural stimuli. Biol. Cybernetics 42:145-156.

    Google Scholar 

  • Aertsen A, Johannesma P (1981b) The spectro-temporal receptive field: A functional characteristic of auditory neurons. Biol. Cybernetics 42:133-143.

    Google Scholar 

  • Aertsen A, Johannesma P, Hermes D (1980a) Spectro-temporal receptive fields of auditory neurons in the grassfrog. II. Analysis of the stimulus-event relation for tonal stimuli. Biol. Cybernetics 38:235-248.

    Google Scholar 

  • Aertsen A, Olders J, Johannesma P (1980b). Spectro-temporal receptive fields of auditory neurons in the grassfrog. III. Analysis of the stimulus-event relation for natural stimuli. Biol. Cybernetics 39:195-209.

    Google Scholar 

  • Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics of ongoing activity: Explanation of the large variability in evoked cortical responses. Science 273:1868-1871.

    Google Scholar 

  • Attias H, Schreiner CE (1997) Temporal low-order statistics of natural sounds. In: Mozer M, Jordan M, Petsche T, eds. Advances in Neural Information Processing Systems. MIT Press, Cambridge, MA. Vol. 9, p. 27.

    Google Scholar 

  • Azouz R, Gray C (1999) Cellular mechanisms contributing to response variability of cortical neurons in vivo. J. Neurosci. 19:2209-2223.

    Google Scholar 

  • Backoff P, Clopton B (1991) A spectrotemporal analysis of DCN single unit responses to wideband noise in guinea pig. Hearing Res. 53:28-40.

    Google Scholar 

  • Boyd S, Tang Y, Chua L (1983) Measuring Volterra kernels. IEEE Trans. Circuits and Systems 30:571-577.

    Google Scholar 

  • Carney L, Friedman M (1998) Spatiotemporal tuning of low-frequency cells in the anteroventral cochlear nucleus. J. Neurosci. 18:1096-1104.

    Google Scholar 

  • Carney L, Yin T (1988) Temporal encoding of resonances by low-frequency auditory nerve fibers: Single-fiber responses and a population model. J. Neurophysiol. 60:1653-1677.

    Google Scholar 

  • Chi T-S, Gao Y, Guyton M, Shamma S (1999) Spectro-temporal modulation transfer functions and speech intelligibility (in press). J. Acoustical Soc. America 106:2719-2732.

    Google Scholar 

  • Clopton B, Backoff P (1991) Spectrotemporal receptive fields of neurons in cochlear nucleus of guinea pig. Hearing Res. 52:329-344.

    Google Scholar 

  • Cohen L (1995) Time-Frequency Analysis. Prentice-Hall. Englewood Cliffs, NJ.

    Google Scholar 

  • de Boer E (1967) Correlation studies applied to the frequency resolution of the cochlea. J. Auditory Res. 7:209-217.

    Google Scholar 

  • de Boer E, de Jongh H (1978) On cochlear encoding: Potentialities 110 Klein et al. and limitations of the reverse-correlation technique. J. Acoustical Soc. America 63:115-135.

    Google Scholar 

  • deCharms R, Blake D, Merzenich M (1998) Optimizing sound features for cortical neurons. Science 280:1439-1443.

    Google Scholar 

  • Depireux D, Simon J, Klein D, Shamma S (1998a) Representation of dynamic complex spectra in primary auditory cortex. Abstracts of the Twenty-first ARO Mid-Winter Meeting. Assoc. Res. Otolaryngol. Abs., Vol. 2 Mt. Royal, NJ.

  • Depireux D, Simon J, Shamma S (1998b) Measuring the dynamics of neural responses in primary auditory cortex. Comments on Theoretical Biol. 5:89-118.

    Google Scholar 

  • Eggermont J (1993) Wiener and Volterra analyses applied to the auditory system. Hearing Res. 66:177-201.

    Google Scholar 

  • Eggermont J, Aertsen A, Hermes D, Johannesma P (1981) Spectro-temporal characterization of auditory neurons: Redundant or necessary? Hearing Res. 5:109-121.

    Google Scholar 

  • Eggermont J, Aertsen A, Johannesma P (1983a) Prediction of the responses of auditory neurons in the midbrain of the grass frog based on the spectro-temporal receptive field. Hearing Res. 10:191-202.

    Google Scholar 

  • Eggermont J, Aertsen A, Johannesma P (1983b) Quantitative characterisation procedure for auditory neurons based on the spectro-temporal receptive field. Hearing Res. 10:167-190.

    Google Scholar 

  • Eggermont J, Johannesma P, Aertsen A (1983c) Reverse-correlation methods in auditory research. Quarterly Rev. Biophysics 16:341-414.

    Google Scholar 

  • Eggermont J, Smith G (1990) Characterizing auditory neurons using the Wigner and Rihacek distributions: A comparison. J. Acoustical Soc. America 87:246-259.

    Google Scholar 

  • Epping W, Eggermont J (1985) Single-unit characteristics in the auditory midbrain of the immobilized grassfrog. Hearing Res. 18:223-243.

    Google Scholar 

  • Escabí M, Schreiner C, Miller L (1998) Dynamic time-frequency processing in the cat midbrain, thalamus, and auditory cortex: Spectro-temporal receptive fields obtained using dynamic ripple spectra. Soc. Neurosci. Abstracts 24:1879.

    Google Scholar 

  • Hermes D, Aertsen A, Johannesma P, Eggermont J (1981) Spectro-temporal characteristics of single units in the midbrain of the lightly anaesthetised grass frog (Rana temporaria L.) investigated with noise stimuli. Hearing Res. 5:147-178.

    Google Scholar 

  • Johnson D (1980) Applicability of white-noise nonlinear system analysis to the peripheral auditory system. J. Acoustical Soc. America 68:876-884.

    Google Scholar 

  • Kim P, Young E (1994) Comparative analysis of spectro-temporal receptive fields, reverse correlation functions, and frequency tuning curves of auditory-nerve fibers. J. Acoustical Soc. America 95:410-422.

    Google Scholar 

  • Korenberg M, Hunter I (1996) The identification of nonlinear biological systems: Volterra kernel approaches. Annals of Biomed. Eng. 24:250-268.

    Google Scholar 

  • Kowalski N, Depireux D, Shamma S (1996a) Analysis of dynamic spectra in ferret primary auditory cortex. I. Characteristics of single-unit responses to moving ripple spectra. J. Neurophysiol. 76:3503-3523.

    Google Scholar 

  • Kowalski N, Depireux D, Shamma S (1996b) Analysis of dynamic spectra in ferret primary auditory cortex. II. Prediction of unit responses to arbitrary dynamic spectra. J. Neurophysiol. 76:3524-3534.

    Google Scholar 

  • Kvale M, Schreiner C, Bonham B (1998) Spectro-temporal and adaptive response to AM stimuli in the inferior colliculus. Abstracts of the Twenty-first ARO Mid-Winter Meeting. Vol. 21.

  • Langner G (1992) Periodicity coding in the auditory system. Hearing Res. 60:115-142.

    Google Scholar 

  • Lee Y, Schetzen M (1965) Measurement of the Wiener kernels of a non-linear system by crosscorrelation. Intl. J. Control 2:237-254.

    Google Scholar 

  • Marmarelis P, Marmarelis V (1978) Analysis of Physiological Systems: The White Noise Approach. Plenum, New York.

    Google Scholar 

  • Marmarelis V (1993) Identification of nonlinear biological systems using Laguerre expansions of kernels. Annals of Biomed. Eng. 21:573-589.

    Google Scholar 

  • Nelken I, Kim P, Young E (1997) Linear and nonlinear spectral integration in type IV neurons of the dorsal cochlear nucleus. II. Predicting responses with the use of nonlinear models. J. Neurophysiol. 78:800-811.

    Google Scholar 

  • Nelken I, Rotman Y, Yosef O (1999) Responses of auditory-cortex neurons to structural features of natural sounds. Nature 397:154-157.

    Google Scholar 

  • Palm G, Popel B (1985) Volterra representation and Wiener-like identification of nonlinear systems: Scope and limitations. Quarterly Rev. Biophysics 18:135-164.

    Google Scholar 

  • Papoulis A (1962) The Fourier Integral and Its Applications. McGraw-Hill, New York.

    Google Scholar 

  • Pickles J (1988) An Introduction to the Physiology of Hearing. Academic Press, San Diego.

    Google Scholar 

  • Ruggero M (1992) Physiology and coding of sound in the auditory nerve. In: Popper A, Fay R, eds. The Mammalian Auditory Pathway: Neurophysiology. Springer-Verlag, New York. pp. 34-93.

    Google Scholar 

  • Schafer M, Rubsamen R, Dorrscheidt G, Knipschild M (1992) Setting complex tasks to single units in the avian forebrain. II: Do we really need natural stimuli to describe neuronal response characteristics? Hearing Res. 57:231-244.

    Google Scholar 

  • Schreiner C, Calhoun B (1995) Spectral envelope coding in cat primary auditory cortex: Properties of ripple transfer functions. J. Auditory Neurosci. 1:39-61.

    Google Scholar 

  • Shamma S (1985) Speech processing in the auditory system I: The representation of speech sounds in the responses of the auditory nerve. J. Acoustical Soc. America 78:1612-1621.

    Google Scholar 

  • Shamma S, Depireux D, Klein D, Simon J (1998) Representation of dynamic broadband spectra in auditory cortex. Soc. Neurosci. Abstracts 24:402.

    Google Scholar 

  • Shamma S, Versnel H, Kowalski N (1995) Ripple analysis in the ferret primary auditory cortex. I. Response characteristics of single units to sinusoidally ripples spectra. J. Auditory Neurosci. 1:233-254.

    Google Scholar 

  • Smolders J, Aertsen A, Johannesma P (1979) Neural representation of the acoustic biotope. Biol. Cybernetics 35:11-20.

    Google Scholar 

  • Sutter E (1992) A deterministic approach to nonlinear systems analysis. In: Pinter R, Nabet B, eds. Nonlinear Vision: Determination of Neural Receptive Fields, Function, and Networks. CRC Press, Boca Raton, FL. pp. 171-220.

    Google Scholar 

  • Swerup C (1978) On the choice of noise for the analysis of the peripheral auditory system. Biol. Cybernetics 29:97-104.

    Google Scholar 

  • Temchin A, Recio A, van Dijk P, Ruggero M (1995) Wiener-kernel analysis of chinchilla auditory-nerve responses to noise. Abstracts of the Eighteenth ARO Mid-Winter Meeting. Vol. 18.

  • Theunissen F, Sen K, Doupe A (1998) Characterizing non-linear encoding in the zebra finch auditory forebrain. Soc. Neurosci. Abstracts 24:402.

    Google Scholar 

  • Valois RD, Valois KD (1990) Spatial Vision. Oxford University Press, New York.

    Google Scholar 

  • van Dijk P, Wit H, Segenhout J (1997) Dissecting the frog inner ear with Gaussian noise. I. Application of high-order Wiener-kernel analysis. Hearing Res. 114:229-242.

    Google Scholar 

  • Victor J (1979) Nonlinear systems analysis: Comparison of white noise and sum of sinusoids in a biological system. Proc. National Academy of Sci. USA 76:996-998.

    Google Scholar 

  • Victor J (1991) Asymptotic approach of generalized orthogonal functional expansions to Wiener kernels. Annals of Biomed. Eng. 19:383-399.

    Google Scholar 

  • Victor J, Knight B (1979) Nonlinear analysis with an arbitrary stimulus ensemble. Quarterly of Applied Math. 37:113-136.

    Google Scholar 

  • Victor J, Shapley R (1980) A method of nonlinear analysis in the frequency domain. Biophysical J. 29:459-484.

    Google Scholar 

  • Volterra V (1930) Theory of Functionals and of Integro-Differential Equations. Dover, New York.

    Google Scholar 

  • Wiener N (1958) Nonlinear Problems in Random Theory. Wiley, New York.

    Google Scholar 

  • Yamada W, Lewis E (1999) Predicting the temporal respsonses of non-phase-locking bullfrog auditory units to complex acoustic waveforms. Hearing Res. 130:155-170.

    Google Scholar 

  • Yamada W, Wolodkin G, Lewis E, Henry K (1997) Wiener kernel analysis and the singular value decomposition. In: Lewis E, ed. Diversity in Auditory Mechanics. World Scientific, Singapore. pp. 111-118.

    Google Scholar 

  • Yeshurun Y, Wollberg Z, Dyn N, Allon N (1985) Identification of MGB cells byVolterra kernels. I. Prediction of responses to species specific vocalizations. Biol. Cybernetics 51:383-390.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, D., Depireux, D., Simon, J. et al. Robust Spectrotemporal Reverse Correlation for the Auditory System: Optimizing Stimulus Design. J Comput Neurosci 9, 85–111 (2000). https://doi.org/10.1023/A:1008990412183

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008990412183

Navigation