Review
Bridging the cleft at GABA synapses in the brain

https://doi.org/10.1016/0166-2236(94)90155-4Get rights and content

Abstract

A fragile balance between excitation and inhibition maintains the normal functioning of the CNS. The dominant inhibitory neurotransmitter of the mammalian brain is GABA, which acts mainly through GABAA and GABAB receptors. Small changes in GABA-mediated inhibition can alter neuronal excitability profoundly and, therefore, a wide range of compounds that clearly modify GABAA-receptor function are used clinically as anesthetics or for the treatment of various nervous system disorders. Recent findings have started to unravel the operation of central GABA synapses where inhibitory events appear to result from the synchronous opening of only tens of GABAA receptors activated by a saturating concentration of GABA. Such properties of GABA synapses impose certain constraints on the physiological and pharmacological modulation of inhibition in the brain.

References (99)

  • L. Sivilotti et al.

    Prog. Neurobiol.

    (1991)
  • J. Bormann

    Trends Neurosci.

    (1988)
  • T.A. Verdoorn et al.

    Neuron

    (1990)
  • Y. Tanabe et al.

    Neuron

    (1992)
  • S.M. Thompson et al.

    Trends Neurosci.

    (1993)
  • J.S. Isaacson et al.

    Neuron

    (1993)
  • M.G. Blanton et al.

    J. Neurosci. Methods

    (1989)
  • T.S. Otis et al.

    Brain Res.

    (1991)
  • T.S. Otis et al.

    Neuroscience

    (1992)
  • G. Tong et al.

    Neuron

    (1994)
  • D.J. Maconochie et al.

    Neuron

    (1994)
  • J.G.G. Borst et al.

    Biophys. J.

    (1994)
  • G. Puia et al.

    Neuron

    (1994)
  • H.P. Robinson et al.

    Biophys. J.

    (1991)
  • S.F. Traynelis et al.

    Neuron

    (1993)
  • L.O. Trussell et al.

    Neuron

    (1989)
  • N.A. Lambert et al.

    Neuron

    (1993)
  • H.H. Samson et al.

    Trends Pharmacol. Sci.

    (1992)
  • D. Colquhoun

    Trends Pharmacol. Sci.

    (1992)
  • I. Llano et al.

    Neuron

    (1991)
  • G.A. Cohen et al.

    Neuron

    (1992)
  • I. Mody et al.

    Brain Res.

    (1991)
  • Y. Manor et al.

    Biophys. J.

    (1991)
  • J.O. McNamara

    Trends Neurosci.

    (1992)
  • W.N. Green et al.

    Neuron

    (1991)
  • M. Segal

    Brain Res.

    (1990)
  • S. Sugita et al.

    Neurosci. Lett.

    (1992)
  • D.C.M. Chu et al.

    Neuroscience

    (1990)
  • T. Hökfelt

    Neuron

    (1991)
  • A. Baude

    Neuron

    (1993)
  • J. Vautrin et al.

    Neurosci. Lett.

    (1992)
  • J.E. Lisman et al.

    Trends Neurosci.

    (1993)
  • N. Spruston et al.

    Trends Neurosci.

    (1994)
  • R.A. Pearce

    Neuron

    (1993)
  • D.V. Madison et al.

    Brain Res.

    (1988)
  • V.A. Doze et al.

    Neuron

    (1991)
  • N. Akaike et al.

    Brain Res.

    (1992)
  • E. Roberts
  • K. Halasy et al.

    J. Hirnforsch.

    (1993)
  • K. Krnjevic et al.

    J. Physiol.

    (1963)
  • E. Roberts et al.

    Neurochem. Res.

    (1993)
  • R.A. Nicoll

    Science

    (1988)
  • N.G. Bowery

    Annu. Rev. Pharmacol. Toxicol.

    (1993)
  • P.R. Schofield

    Nature

    (1987)
  • N. Nayeem et al.

    J. Neurochem.

    (1994)
  • K.H. Backus

    NeuroReport

    (1993)
  • T.P. Angelotti et al.

    J. Neurosci.

    (1993)
  • S.J. Zhang et al.

    Science

    (1993)
  • Cited by (560)

    • Benzodiazepine receptor agonists and sleep

      2023, Encyclopedia of Sleep and Circadian Rhythms: Volume 1-6, Second Edition
    View all citing articles on Scopus
    View full text