Skip to main content

Advertisement

Log in

LRRK2 Pathways Leading to Neurodegeneration

  • Genetics (V Bonifati, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Mutations in LRRK2 are associated with inherited Parkinson’s disease (PD) in a large number of families, and the genetic locus containing the LRRK2 gene contains a risk factor for sporadic PD. The LRRK2 protein contains several domains that suggest a role in cellular signaling, including a kinase domain. It is also clear that LRRK2 interacts, either physically or genetically, with several other important proteins implicated in PD, suggesting that LRRK2 may be a central player in the pathways that underlie parkinsonism. As such, LRRK2 has been proposed to be a plausible target for therapeutic intervention, with kinase inhibition being pursued most actively. However, there are still several fundamental aspects of LRRK2 biology and function that remain unresolved at this time. This review will focus on the key questions of normal function of LRRK2 and how this might be related to the pathophysiology of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Foley AR, Menezes MP, Pandraud A, et al. Treatable childhood neuronopathy caused by mutations in riboflavin transporter RFVT2. Brain. 2014;137:44–56. doi:10.1093/brain/awt315.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Amin R, Ratjen F. Emerging drugs for cystic fibrosis. Expert Opin Emerg Drugs. 2014;19:143–55. doi:10.1517/14728214.2014.882316.

    Article  CAS  PubMed  Google Scholar 

  3. Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276:2045–7.

    Article  CAS  PubMed  Google Scholar 

  4. Paisán-Ruíz C, Jain S, Evans EW, et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron. 2004;44:595–600. doi:10.1016/j.neuron.2004.10.023.

    Article  PubMed  Google Scholar 

  5. Zimprich A, Biskup S, Leitner P, et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron. 2004;44:601–7. doi:10.1016/j.neuron.2004.11.005.

    Article  CAS  PubMed  Google Scholar 

  6. Funayama M, Hasegawa K, Ohta E, et al. An LRRK2 mutation as a cause for the parkinsonism in the original PARK8 family. Ann Neurol. 2005;57:918–21. doi:10.1002/ana.20484.

    Article  CAS  PubMed  Google Scholar 

  7. Kay DM, Kramer P, Higgins D, et al. Escaping Parkinson’s disease: a neurologically healthy octogenarian with the LRRK2 G2019S mutation. Mov Disord. 2005;20:1077–8. doi:10.1002/mds.20618.

    Article  PubMed  Google Scholar 

  8. Bardien S, Lesage S, Brice A, Carr J. Genetic characteristics of leucine-rich repeat kinase 2 (LRRK2) associated Parkinson’s disease. Parkinsonism Relat Disord. 2011;17:501–8. doi:10.1016/j.parkreldis.2010.11.008.

    Article  PubMed  Google Scholar 

  9. Benamer HTS, de Silva R. LRRK2 G2019S in the North African population: a review. Eur Neurol. 2010;63:321–5. doi:10.1159/000279653.

    Article  CAS  PubMed  Google Scholar 

  10. Troiano AR, Elbaz A, Lohmann E, et al. Low disease risk in relatives of North African lrrk2 Parkinson disease patients. Neurology. 2010;75:1118–9. doi:10.1212/WNL.0b013e3181f39a2e.

    Article  CAS  PubMed  Google Scholar 

  11. Simón-Sánchez J, Schulte C, Bras JM, et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet. 2009;41:1308–12. doi:10.1038/ng.487.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Satake W, Nakabayashi Y, Mizuta I, et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet. 2009;41:1303–7. doi:10.1038/ng.485.

    Article  CAS  PubMed  Google Scholar 

  13. Do CB, Tung JY, Dorfman E, et al. Web-based genome-wide association study identifies two novel loci and a substantial genetic component for Parkinson’s disease. PLoS Genet. 2011;7, e1002141. doi:10.1371/journal.pgen.1002141.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Lill CM, Roehr JT, McQueen MB, et al. Comprehensive research synopsis and systematic meta-analyses in Parkinson’s disease genetics: the PDGene database. PLoS Genet. 2012;8, e1002548. doi:10.1371/journal.pgen.1002548.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Singleton A, Hardy J. A generalizable hypothesis for the genetic architecture of disease: pleomorphic risk loci. Hum Mol Genet. 2011;20:R158–62. doi:10.1093/hmg/ddr358.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Mata IF, Wedemeyer WJ, Farrer MJ, et al. LRRK2 in Parkinson’s disease: protein domains and functional insights. Trends Neurosci. 2006;29:286–93. doi:10.1016/j.tins.2006.03.006.

    Article  CAS  PubMed  Google Scholar 

  17. West AB, Moore DJ, Biskup S, et al. Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci U S A. 2005;102:16842–7. doi:10.1073/pnas.0507360102.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Greggio E, Jain S, Kingsbury A, et al. Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol Dis. 2006;23:329–41. doi:10.1016/j.nbd.2006.04.001.

    Article  CAS  PubMed  Google Scholar 

  19. Greggio E, Cookson MR. Leucine-rich repeat kinase 2 mutations and Parkinson’s disease: three questions. ASN Neuro. 2009. doi:10.1042/AN20090007.

    PubMed Central  PubMed  Google Scholar 

  20. Smith WW, Pei Z, Jiang H, et al. Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat Neurosci. 2006;9:1231–3. doi:10.1038/nn1776.

    Article  CAS  PubMed  Google Scholar 

  21. Lee BD, Shin J-H, VanKampen J, et al. Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson’s disease. Nat Med. 2010;16:998–1000. doi:10.1038/nm.2199.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Deng X, Dzamko N, Prescott A, et al. Characterization of a selective inhibitor of the Parkinson’s disease kinase LRRK2. Nat Chem Biol. 2011;7:203–5. doi:10.1038/nchembio.538.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Göring S, Taymans J-M, Baekelandt V, Schmidt B. Indolinone based LRRK2 kinase inhibitors with a key hydrogen bond. Bioorg Med Chem Lett. 2014;24:4630–7. doi:10.1016/j.bmcl.2014.08.049.

    Article  PubMed  Google Scholar 

  24. Henderson JL, Kormos BL, Hayward MM, et al. Discovery and preclinical profiling of 3-[4-(Morpholin-4-yl)-7H-pyrrolo[2,3-d]pyrimidin-5-yl]benzonitrile (PF-06447475), a highly potent, selective, brain penetrant, and in vivo active LRRK2 kinase inhibitor. J Med Chem. 2014. doi:10.1021/jm5014055.

    PubMed  Google Scholar 

  25. Sheng Z, Zhang S, Bustos D, et al. Ser1292 autophosphorylation is an indicator of LRRK2 kinase activity and contributes to the cellular effects of PD mutations. Sci Transl Med. 2012;4:164ra161. doi:10.1126/scitranslmed.3004485.

    Article  PubMed  Google Scholar 

  26. Yao C, Johnson WM, Gao Y, et al. Kinase inhibitors arrest neurodegeneration in cell and C. elegans models of LRRK2 toxicity. Hum Mol Genet. 2012. doi:10.1093/hmg/dds431.

    PubMed Central  PubMed  Google Scholar 

  27. Fuji RN, Flagella M, Baca M, et al. Effect of selective LRRK2 kinase inhibition on nonhuman primate lung. Sci Transl Med. 2015;7:273ra15. doi:10.1126/scitranslmed.aaa3634.

    Article  PubMed  Google Scholar 

  28. Rudenko IN, Kaganovich A, Hauser DN, et al. The G2385R variant of leucine-rich repeat kinase 2 associated with Parkinson’s disease is a partial loss-of-function mutation. Biochem J. 2012;446:99–111. doi:10.1042/BJ20120637.

    Article  CAS  PubMed  Google Scholar 

  29. Rudenko IN, Chia R, Cookson MR. Is inhibition of kinase activity the only therapeutic strategy for LRRK2-associated Parkinson’s disease? BMC Med. 2012;10:20. doi:10.1186/1741-7015-10-20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Li X, Wang QJ, Pan N, et al. Phosphorylation-dependent 14-3-3 binding to LRRK2 is impaired by common mutations of familial Parkinson’s disease. PLoS ONE. 2011;6, e17153. doi:10.1371/journal.pone.0017153.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Nichols RJ, Dzamko N, Morrice NA, et al. 14-3-3 binding to LRRK2 is disrupted by multiple Parkinson’s disease-associated mutations and regulates cytoplasmic localization. Biochem J. 2010;430:393–404. doi:10.1042/BJ20100483.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Chia R, Haddock S, Beilina A, et al. Phosphorylation of LRRK2 by casein kinase 1α regulates trans-Golgi clustering via differential interaction with ARHGEF7. Nat Commun. 2014;5:5827. doi:10.1038/ncomms6827.

    Article  CAS  PubMed  Google Scholar 

  33. Dzamko N, Inesta-Vaquera F, Zhang J, et al. The IkappaB kinase family phosphorylates the Parkinson’s disease kinase LRRK2 at Ser935 and Ser910 during Toll-like receptor signaling. PLoS ONE. 2012;7, e39132. doi:10.1371/journal.pone.0039132.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Lobbestael E, Zhao J, Rudenko IN, et al. Identification of protein phosphatase 1 as a regulator of the LRRK2 phosphorylation cycle. Biochem J. 2013;456:119–28. doi:10.1042/BJ20121772.

    Article  CAS  PubMed  Google Scholar 

  35. Dzamko N, Deak M, Hentati F, et al. Inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser(910)/Ser(935), disruption of 14-3-3 binding and altered cytoplasmic localization. Biochem J. 2010;430:405–13. doi:10.1042/BJ20100784.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Skibinski G, Nakamura K, Cookson MR, Finkbeiner S. Mutant LRRK2 toxicity in neurons depends on LRRK2 levels and synuclein but not kinase activity or inclusion bodies. J Neurosci. 2014;34:418–33. doi:10.1523/JNEUROSCI.2712-13.2014.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Marín I, van Egmond WN, van Haastert PJM. The Roco protein family: a functional perspective. FASEB J. 2008;22:3103–10. doi:10.1096/fj.08-111310.

    Article  PubMed  Google Scholar 

  38. Gasper R, Meyer S, Gotthardt K, et al. It takes two to tango: regulation of G proteins by dimerization. Nat Rev Mol Cell Biol. 2009;10:423–9. doi:10.1038/nrm2689.

    Article  CAS  PubMed  Google Scholar 

  39. Guo L, Gandhi PN, Wang W, et al. The Parkinson’s disease-associated protein, leucine-rich repeat kinase 2 (LRRK2), is an authentic GTPase that stimulates kinase activity. Exp Cell Res. 2007;313:3658–70. doi:10.1016/j.yexcr.2007.07.007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Lewis PA, Greggio E, Beilina A, et al. The R1441C mutation of LRRK2 disrupts GTP hydrolysis. Biochem Biophys Res Commun. 2007;357:668–71. doi:10.1016/j.bbrc.2007.04.006.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. West AB, Moore DJ, Choi C, et al. Parkinson’s disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Hum Mol Genet. 2007;16:223–32. doi:10.1093/hmg/ddl471.

    Article  CAS  PubMed  Google Scholar 

  42. Stafa K, Trancikova A, Webber PJ, et al. GTPase activity and neuronal toxicity of Parkinson’s disease-associated LRRK2 is regulated by ArfGAP1. PLoS Genet. 2012;8, e1002526. doi:10.1371/journal.pgen.1002526.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Liao J, Wu C-X, Burlak C, et al. Parkinson disease-associated mutation R1441H in LRRK2 prolongs the “active state” of its GTPase domain. Proc Natl Acad Sci U S A. 2014. doi:10.1073/pnas.1323285111.

    Google Scholar 

  44. Li X, Tan Y-C, Poulose S, et al. Leucine-rich repeat kinase 2 (LRRK2)/PARK8 possesses GTPase activity that is altered in familial Parkinson’s disease R1441C/G mutants. J Neurochem. 2007;103:238–47. doi:10.1111/j.1471-4159.2007.04743.x.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Dzamko N, Zhou J, Huang Y, Halliday GM. Parkinson’s disease-implicated kinases in the brain; insights into disease pathogenesis. Front Mol Neurosci. 2014;7:57. doi:10.3389/fnmol.2014.00057.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Xiong Y, Yuan C, Chen R, et al. ArfGAP1 is a GTPase activating protein for LRRK2: reciprocal regulation of ArfGAP1 by LRRK2. J Neurosci. 2012;32:3877–86. doi:10.1523/JNEUROSCI.4566-11.2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Haebig K, Gloeckner CJ, Miralles MG, et al. ARHGEF7 (Beta-PIX) acts as guanine nucleotide exchange factor for leucine-rich repeat kinase 2. PLoS ONE. 2010;5, e13762. doi:10.1371/journal.pone.0013762.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Berger Z, Smith KA, Lavoie MJ. Membrane localization of LRRK2 is associated with increased formation of the highly active LRRK2 dimer and changes in its phosphorylation. Biochemistry. 2010;49:5511–23. doi:10.1021/bi100157u.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Civiero L, Vancraenenbroeck R, Belluzzi E, et al. Biochemical characterization of highly purified leucine-rich repeat kinases 1 and 2 demonstrates formation of homodimers. PLoS ONE. 2012;7, e43472. doi:10.1371/journal.pone.0043472.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Greggio E, Zambrano I, Kaganovich A, et al. The Parkinson disease-associated leucine-rich repeat kinase 2 (LRRK2) is a dimer that undergoes intramolecular autophosphorylation. J Biol Chem. 2008;283:16906–14. doi:10.1074/jbc.M708718200.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Ito G, Iwatsubo T. Re-examination of the dimerization state of leucine-rich repeat kinase 2: predominance of the monomeric form. Biochem J. 2012;441:987–94. doi:10.1042/BJ20111215.

    Article  CAS  PubMed  Google Scholar 

  52. Gotthardt K, Weyand M, Kortholt A, et al. Structure of the Roc-COR domain tandem of C. tepidum, a prokaryotic homologue of the human LRRK2 Parkinson kinase. EMBO J. 2008;27:2239–49. doi:10.1038/emboj.2008.150.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Korr D, Toschi L, Donner P, et al. LRRK1 protein kinase activity is stimulated upon binding of GTP to its Roc domain. Cell Signal. 2006;18:910–20. doi:10.1016/j.cellsig.2005.08.015.

    Article  CAS  PubMed  Google Scholar 

  54. Taymans J-M, Vancraenenbroeck R, Ollikainen P, et al. LRRK2 kinase activity is dependent on LRRK2 GTP binding capacity but independent of LRRK2 GTP binding. PLoS ONE. 2011;6, e23207. doi:10.1371/journal.pone.0023207.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Liu M, Kang S, Ray S, et al. Kinetic, mechanistic, and structural modeling studies of truncated wild-type leucine-rich repeat kinase 2 and the G2019S mutant. Biochemistry. 2011;50:9399–408. doi:10.1021/bi201173d.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Ray S, Bender S, Kang S, et al. The Parkinson disease-linked LRRK2 protein mutation I2020T stabilizes an active state conformation leading to increased kinase activity. J Biol Chem. 2014;289:13042–53. doi:10.1074/jbc.M113.537811.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Sen S, Webber PJ, West AB. Dependence of leucine-rich repeat kinase 2 (LRRK2) kinase activity on dimerization. J Biol Chem. 2009;284:36346–56. doi:10.1074/jbc.M109.025437.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Herzig MC, Kolly C, Persohn E, et al. LRRK2 protein levels are determined by kinase function and are crucial for kidney and lung homeostasis in mice. Hum Mol Genet. 2011;20:4209–23. doi:10.1093/hmg/ddr348.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. MacLeod D, Dowman J, Hammond R, et al. The familial parkinsonism gene LRRK2 regulates neurite process morphology. Neuron. 2006;52:587–93. doi:10.1016/j.neuron.2006.10.008.

    Article  CAS  PubMed  Google Scholar 

  60. Dächsel JC, Behrouz B, Yue M, et al. A comparative study of Lrrk2 function in primary neuronal cultures. Parkinsonism Relat Disord. 2010;16:650–5. doi:10.1016/j.parkreldis.2010.08.018.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Alegre-Abarrategui J, Christian H, Lufino MMP, et al. LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model. Hum Mol Genet. 2009;18:4022–34. doi:10.1093/hmg/ddp346.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Biskup S, Moore DJ, Celsi F, et al. Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Ann Neurol. 2006;60:557–69. doi:10.1002/ana.21019.

    Article  CAS  PubMed  Google Scholar 

  63. Higashi S, Biskup S, West AB, et al. Localization of Parkinson’s disease-associated LRRK2 in normal and pathological human brain. Brain Res. 2007;1155:208–19. doi:10.1016/j.brainres.2007.04.034.

    Article  CAS  PubMed  Google Scholar 

  64. Davies P, Hinkle KM, Sukar NN, et al. Comprehensive characterization and optimization of leucine rich repeat kinase 2 (LRRK2) monoclonal antibodies. Biochem J. 2013. doi:10.1042/BJ20121742.

    Google Scholar 

  65. Kett LR, Boassa D, Ho CC-Y, et al. LRRK2 Parkinson disease mutations enhance its microtubule association. Hum Mol Genet. 2012;21:890–9. doi:10.1093/hmg/ddr526.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Law BMH, Spain VA, Leinster VHL, et al. A direct interaction between leucine-rich repeat kinase 2 and specific β-tubulin isoforms regulates tubulin acetylation. J Biol Chem. 2014;289:895–908. doi:10.1074/jbc.M113.507913.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Caesar M, Zach S, Carlson CB, et al. Leucine-rich repeat kinase 2 functionally interacts with microtubules and kinase-dependently modulates cell migration. Neurobiol Dis. 2013;54:280–8. doi:10.1016/j.nbd.2012.12.019.

    Article  CAS  PubMed  Google Scholar 

  68. Tong Y, Giaime E, Yamaguchi H, et al. Loss of leucine-rich repeat kinase 2 causes age-dependent bi-phasic alterations of the autophagy pathway. Mol Neurodegener. 2012;7:2. doi:10.1186/1750-1326-7-2. This paper shows how phenotypes in LRRK2 knockout mice are affected by age. The exact interpretation of this data is not yet clear, but likely indicate that phenotypes are a mix of direct effect of loss of LRRK2 and compensatory changes in the same pathway.

  69. Tong Y, Yamaguchi H, Giaime E, et al. Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice. Proc Natl Acad Sci U S A. 2010;107:9879–84. doi:10.1073/pnas.1004676107.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Baptista MAS, Dave KD, Frasier MA, et al. Loss of leucine-rich repeat kinase 2 (LRRK2) in rats leads to progressive abnormal phenotypes in peripheral organs. PLoS ONE. 2013;8, e80705. doi:10.1371/journal.pone.0080705.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Manzoni C, Mamais A, Dihanich S, et al. Inhibition of LRRK2 kinase activity stimulates macroautophagy. Biochim Biophys Acta. 2013;1833:2900–10. doi:10.1016/j.bbamcr.2013.07.020.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Manzoni C, Mamais A, Dihanich S, et al. Pathogenic Parkinson’s disease mutations across the functional domains of LRRK2 alter the autophagic/lysosomal response to starvation. Biochem Biophys Res Commun. 2013;441:862–6. doi:10.1016/j.bbrc.2013.10.159. Along with companion paper 71, the study by Manzoni et al is one of the first to show consistent biochemical effects of LRRK2 mutations in an autophagy related pathway. Of interest, the direction of effect of mutations is opposite that of kinase inhibitors, supporting the idea that mutations have a gain of normal function.

  73. Zerial M, McBride H. Rab proteins as membrane organizers. Nat Rev Mol Cell Biol. 2001;2:107–17. doi:10.1038/35052055.

    Article  CAS  PubMed  Google Scholar 

  74. Dodson MW, Zhang T, Jiang C, et al. Roles of the Drosophila LRRK2 homolog in Rab7-dependent lysosomal positioning. Hum Mol Genet. 2012;21:1350–63. doi:10.1093/hmg/ddr573.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Manzoni C, Denny P, Lovering R, Lewis PA. Computational analysis of the LRRK2 interactome. PeerJ. 2015;3, e778.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Porras P, Duesbury M, Fabregat A, et al. A visual review of the interactome of LRRK2: using deep-curated molecular interactions data to represent biology. Proteomics. 2015. doi:10.1002/pmic.201400390.

    PubMed Central  PubMed  Google Scholar 

  77. Fenner BJ, Scannell M, Prehn JHM. Expanding the substantial interactome of NEMO using protein microarrays. PLoS ONE. 2010;5, e8799. doi:10.1371/journal.pone.0008799.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Al-Mulla F, Bitar MS, Al-Maghrebi M, et al. Raf kinase inhibitor protein RKIP enhances signaling by glycogen synthase kinase-3β. Cancer Res. 2011;71:1334–43. doi:10.1158/0008-5472.CAN-10-3102.

    Article  CAS  PubMed  Google Scholar 

  79. Tong Y, Ben-Shlomo A, Zhou C, et al. Pituitary tumor transforming gene 1 regulates Aurora kinase A activity. Oncogene. 2008;27:6385–95. doi:10.1038/onc.2008.234.

    Article  CAS  PubMed  Google Scholar 

  80. Reyniers L, Del Giudice MG, Civiero L, et al. Differential protein-protein interactions of LRRK1 and LRRK2 indicate roles in distinct cellular signaling pathways. J Neurochem. 2014. doi:10.1111/jnc.12798.

    PubMed  Google Scholar 

  81. Beilina A, Rudenko IN, Kaganovich A, et al. Unbiased screen for interactors of leucine-rich repeat kinase 2 supports a common pathway for sporadic and familial Parkinson disease. Proc Natl Acad Sci U S A. 2014. doi:10.1073/pnas.1318306111. This paper, which is from my laboratory in collaboration with several other groups, indicates a potential relationship between LRRK2 and two proteins in GWAS-nominated regions for sporadic PD risk. Reference 90 also shows an interaction between LRRK2 and Rab7L1.

  82. Hanafusa H, Ishikawa K, Kedashiro S, et al. Leucine-rich repeat kinase LRRK1 regulates endosomal trafficking of the EGF receptor. Nat Commun. 2011;2:158. doi:10.1038/ncomms1161.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Ishikawa K, Nara A, Matsumoto K, Hanafusa H. EGFR-dependent phosphorylation of leucine-rich repeat kinase LRRK1 is important for proper endosomal trafficking of EGFR. Mol Biol Cell. 2012;23:1294–306. doi:10.1091/mbc.E11-09-0780.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Zheng X, Yang M, Tan J, et al. Screening of LRRK2 interactants by yeast 2-hybrid analysis. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2008;33:883–91.

    CAS  PubMed  Google Scholar 

  85. Kabbage M, Dickman MB. The BAG proteins: a ubiquitous family of chaperone regulators. Cell Mol Life Sci. 2008;65:1390–402. doi:10.1007/s00018-008-7535-2.

    Article  CAS  PubMed  Google Scholar 

  86. Dächsel JC, Taylor JP, Mok SS, et al. Identification of potential protein interactors of Lrrk2. Parkinsonism Relat Disord. 2007;13:382–5. doi:10.1016/j.parkreldis.2007.01.008.

    Article  PubMed Central  PubMed  Google Scholar 

  87. Helip-Wooley A, Thoene JG. Sucrose-induced vacuolation results in increased expression of cholesterol biosynthesis and lysosomal genes. Exp Cell Res. 2004;292:89–100.

    Article  CAS  PubMed  Google Scholar 

  88. Eisenberg E, Greene LE. Multiple roles of auxilin and hsc70 in clathrin-mediated endocytosis. Traffic. 2007;8:640–6. doi:10.1111/j.1600-0854.2007.00568.x.

    Article  CAS  PubMed  Google Scholar 

  89. Zhang CX, Engqvist-Goldstein AEY, Carreno S, et al. Multiple roles for cyclin G-associated kinase in clathrin-mediated sorting events. Traffic. 2005;6:1103–13. doi:10.1111/j.1600-0854.2005.00346.x.

    Article  CAS  PubMed  Google Scholar 

  90. Macleod DA, Rhinn H, Kuwahara T, et al. RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson’s disease risk. Neuron. 2013;77:425–39. doi:10.1016/j.neuron.2012.11.033. This paper, along with reference 81, showed that LRRK2 interacts with the GWAS candidate gene Rab7L1. In this paper, the authors also indicate an effect on VPS35, part of the retromer complex and a gene for inherited PD (see references 92 and 93).

  91. Cullen PJ, Korswagen HC. Sorting nexins provide diversity for retromer-dependent trafficking events. Nat Cell Biol. 2012;14:29–37. doi:10.1038/ncb2374.

    Article  CAS  Google Scholar 

  92. Vilariño-Güell C, Wider C, Ross OA, et al. VPS35 mutations in Parkinson disease. Am J Hum Genet. 2011;89:162–7. doi:10.1016/j.ajhg.2011.06.001.

    Article  PubMed Central  PubMed  Google Scholar 

  93. Zimprich A, Benet-Pagès A, Struhal W, et al. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet. 2011;89:168–75. doi:10.1016/j.ajhg.2011.06.008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Nalls MA, Pankratz N, Lill CM, et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet. 2014;46:989–93. doi:10.1038/ng.3043. This is the latest iteration of GWAS in PD, using data combined from many groups around the world and indicating that sporadic PD risk is influenced by more than twenty independent genetic factors.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Pandey AK, Williams RW. Genetics of gene expression in CNS. Int Rev Neurobiol. 2014;116:195–231. doi:10.1016/B978-0-12-801105-8.00008-4.

    PubMed Central  PubMed  Google Scholar 

  96. Köroğlu Ç, Baysal L, Cetinkaya M, et al. DNAJC6 is responsible for juvenile parkinsonism with phenotypic variability. Parkinsonism Relat Disord. 2013;19:320–4. doi:10.1016/j.parkreldis.2012.11.006.

    Article  PubMed  Google Scholar 

  97. Edvardson S, Cinnamon Y, Ta-Shma A, et al. A deleterious mutation in DNAJC6 encoding the neuronal-specific clathrin-uncoating co-chaperone auxilin, is associated with juvenile parkinsonism. PLoS ONE. 2012;7, e36458. doi:10.1371/journal.pone.0036458.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Quadri M, Fang M, Picillo M, et al. Mutation in the SYNJ1 gene associated with autosomal recessive, early-onset parkinsonism. Hum Mutat. 2013;34:1208–15. doi:10.1002/humu.22373.

    Article  CAS  PubMed  Google Scholar 

  99. Krebs CE, Karkheiran S, Powell JC, et al. The Sac1 domain of SYNJ1 identified mutated in a family with early-onset progressive parkinsonism with generalized seizures. Hum Mutat. 2013;34:1200–7. doi:10.1002/humu.22372.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Taymans J-M, Cookson MR. Mechanisms in dominant parkinsonism: the toxic triangle of LRRK2, alpha-synuclein, and tau. Bioessays. 2010;32:227–35. doi:10.1002/bies.200900163.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Intramural Research Program of the NIH, National Institute on Aging. For reasons of space, I unfortunately was not able to quote all of the primary literature and apologize to those colleagues whose work is mentioned in other reviews and not included directly here.

Compliance with Ethics Guidelines

Conflict of Interest

Mark R. Cookson declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Cookson.

Additional information

This article is part of the Topical Collection on Genetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cookson, M.R. LRRK2 Pathways Leading to Neurodegeneration. Curr Neurol Neurosci Rep 15, 42 (2015). https://doi.org/10.1007/s11910-015-0564-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-015-0564-y

Keywords

Navigation