Skip to main content
Log in

Astrocyte–Neuron Communication: Functional Consequences

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Astrocyte–neuron communication has recently been proposed as a potential mechanism participating to synaptic transmission. With the development of this concept and accumulating evidences in favor of a modulation of synaptic transmission by astrocytes, has emerged the term gliotransmission. It refers to the capacity of astrocytes to release various transmitters, such as ATP, glutamate, d-serine, and GABA in the vicinity of synapses. While the cellular mechanisms involved in gliotransmission still need to be better described and, for some, identified, the aim of more and more studies is to determine the role of astrocytes from a functional point of view. This review will summarize the principal studies that have investigated a potential role of astrocytes in the various functions regulated by the brain (sleep, breathing, perception, learning and memory…). This will allow us to highlight the similarities and discrepancies in the signaling pathways involved in the different areas of the brain related to these functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hertz L (1965) Possible role of neuroglia: a potassium-mediated neuronal–neuroglial–neuronal impulse transmission system. Nature 206(989):1091–1094

    Article  PubMed  CAS  Google Scholar 

  2. Walz W (2000) Role of astrocytes in the clearance of excess extracellular potassium. Neurochem Int 36(4–5):291–300

    Article  PubMed  CAS  Google Scholar 

  3. Huang YH, Bergles DE (2004) Glutamate transporters bring competition to the synapse. Curr Opin Neurobiol 14(3):346–352

    Article  PubMed  CAS  Google Scholar 

  4. Oberheim NA, Wang X, Goldman S, Nedergaard M (2006) Astrocytic complexity distinguishes the human brain. Trends Neurosci 29(10):547–553

    Article  PubMed  CAS  Google Scholar 

  5. Oliet SH, Piet R, Poulain DA (2001) Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science 292(5518):923–926

    Article  PubMed  CAS  Google Scholar 

  6. Haber M, Zhou L, Murai KK (2006) Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses. J Neurosci 26(35):8881–8891

    Article  PubMed  CAS  Google Scholar 

  7. Hirrlinger J, Hulsmann S, Kirchhoff F (2004) Astroglial processes show spontaneous motility at active synaptic terminals in situ. Eur J Neurosci 20(8):2235–2239

    Article  PubMed  Google Scholar 

  8. Haydon PG (2001) GLIA: listening and talking to the synapse. Nat Rev 2(3):185–193

    Article  CAS  Google Scholar 

  9. Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev 6(8):626–640

    Article  CAS  Google Scholar 

  10. Ormel L, Stensrud MJ, Bergersen LH, Gundersen V (2012) VGLUT1 is localized in astrocytic processes in several brain regions. Glia 60(2):229–238

    Article  PubMed  Google Scholar 

  11. Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhäuser C, Pilati E, Volterra A (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7(6):613–620

    Article  PubMed  CAS  Google Scholar 

  12. Mittelsteadt T, Seifert G, Alvárez-Barón E, Steinhäuser C, Becker AJ, Schoch S (2009) Differential mRNA expression patterns of the synaptotagmin gene family in the rodent brain. J Comp Neurol 512(4):514–528

    Article  PubMed  CAS  Google Scholar 

  13. Malarkey EB, Parpura V (2008) Mechanisms of glutamate release from astrocytes. Neurochem Int 52(1–2):142–154

    Article  PubMed  CAS  Google Scholar 

  14. Bowser DN, Khakh BS (2007) Two forms of single-vesicle astrocyte exocytosis imaged with total internal reflection fluorescence microscopy. Proc Nat Acad Sci 104(10):4212–4217

    Article  PubMed  CAS  Google Scholar 

  15. Liu T, Sun L, Xiong Y, Shang S, Guo N, Teng S, Wang Y, Liu B, Wang C, Wang L, Zheng L, Zhang CX, Han W, Zhou Z (2011) Calcium triggers exocytosis from two types of organelles in a single astrocyte. J Neurosci 31(29):10593–10601

    Article  PubMed  CAS  Google Scholar 

  16. Li D, Ropert N, Koulakoff A, Giaume C, Oheim M (2008) Lysosomes are the major vesicular compartment undergoing Ca2+-regulated exocytosis from cortical astrocytes. J Neurosci 28(30):7648–7658

    Article  PubMed  CAS  Google Scholar 

  17. Hamilton NB, Attwell D (2010) Do astrocytes really exocytose neurotransmitters? Nat Rev 11(4):227–238

    Article  CAS  Google Scholar 

  18. Porter JT, McCarthy KD (1996) Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J Neurosci 16(16):5073–5081

    PubMed  CAS  Google Scholar 

  19. Bowser DN, Khakh BS (2004) ATP excites interneurons and astrocytes to increase synaptic inhibition in neuronal networks. J Neurosci 24(39):8606–8620

    Article  PubMed  CAS  Google Scholar 

  20. Agulhon C, Fiacco TA, McCarthy KD (2010) Hippocampal short- and long-term plasticity are not modulated by astrocyte Ca2+ signaling. Science 327(5970):1250–1254

    Article  PubMed  CAS  Google Scholar 

  21. Agulhon C, Petravicz J, McMullen AB, Sweger EJ, Minton SK, Taves SR, Casper KB, Fiacco TA, McCarthy KD (2008) What is the role of astrocyte calcium in neurophysiology? Neuron 59(6):932–946

    Article  PubMed  CAS  Google Scholar 

  22. Shigetomi E, Kracun S, Sofroniew MV, Khakh BS (2010) A genetically targeted optical sensor to monitor calcium signals in astrocyte processes. Nat Neurosci 13(6):759–766

    Article  PubMed  CAS  Google Scholar 

  23. Shigetomi E, Tong X, Kwan KY, Corey DP, Khakh BS (2011) TRPA1 channels regulate astrocyte resting calcium and inhibitory synapse efficacy through GAT-3. Nat Neurosci 15(1):70–80

    Article  PubMed  CAS  Google Scholar 

  24. Di Castro MA, Chuquet J, Liaudet N, Bhaukaurally K, Santello M, Bouvier D, Tiret P, Volterra A (2011) Local Ca2+ detection and modulation of synaptic release by astrocytes. Nat Neurosci 14(10):1276–1284

    Article  PubMed  CAS  Google Scholar 

  25. Ben Achour S, Pont-Lezica L, Béchade C, Pascual O (2010) Is astrocyte calcium signaling relevant for synaptic plasticity? Neuron Glia Biol 6(03):147–155

    Article  Google Scholar 

  26. Nedergaard M, Verkhratsky A (2012) Artifact versus reality—how astrocytes contribute to synaptic events? Glia. doi:10.1002/glia.22288

  27. Matthias K, Kirchhoff F, Seifert G, Huttmann K, Matyash M, Kettenmann H, Steinhauser C (2003) Segregated expression of AMPA-type glutamate receptors and glutamate transporters defines distinct astrocyte populations in the mouse hippocampus. J Neurosci 23(5):1750–1758

    PubMed  CAS  Google Scholar 

  28. Zhou M, Schools GP, Kimelberg HK (2006) Development of GLAST(+) astrocytes and NG2(+) glia in rat hippocampus CA1: mature astrocytes are electrophysiologically passive. J Neurophysiol 95(1):134–143

    Article  PubMed  CAS  Google Scholar 

  29. Panatier A, Vallée J, Haber M, Murai KK, Lacaille J-C, Robitaille R (2011) Astrocytes are endogenous regulators of basal transmission at central synapses. Cell 146(5):785–798

    Article  PubMed  CAS  Google Scholar 

  30. Shigetomi E, Bowser DN, Sofroniew MV, Khakh BS (2008) Two forms of astrocyte calcium excitability have distinct effects on NMDA receptor-mediated slow inward currents in pyramidal neurons. J Neurosci 28(26):6659–6663

    Article  PubMed  CAS  Google Scholar 

  31. Fellin T, Pascual O, Gobbo S, Pozzan T, Haydon PG, Carmignoto G (2004) Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron 43(5):729–743

    Article  PubMed  CAS  Google Scholar 

  32. Angulo MC, Kozlov AS, Charpak S, Audinat E (2004) Glutamate released from glial cells synchronizes neuronal activity in the hippocampus. J Neurosci 24(31):6920–6927

    Article  PubMed  CAS  Google Scholar 

  33. Perea G, Araque A (2007) Astrocytes potentiate transmitter release at single hippocampal synapses. Science 317(5841):1083–1086

    Article  PubMed  CAS  Google Scholar 

  34. Bonansco C, Couve A, Perea G, Ferradas CÁ, Roncagliolo M, Fuenzalida M (2011) Glutamate released spontaneously from astrocytes sets the threshold for synaptic plasticity. Eur J Neurosci 33(8):1483–1492

    Article  PubMed  Google Scholar 

  35. Navarrete M, Perea G, de Sevilla DF, Gomez-Gonzalo M, Nùñez A, Martin ED, Araque A (2012) Astrocytes mediate in vivo cholinergic-induced synaptic plasticity. PLoS Biol 10(2):e1001259

    Article  PubMed  CAS  Google Scholar 

  36. Han J, Kesner P, Metna-Laurent M, Duan T, Xu L, Georges F, Koehl M, Abrous DN, Mendizabal-Zubiaga J, Grandes P, Liu Q, Bai G, Wang W, Xiong L, Ren W, Marsicano G, Zhang X (2012) Acute cannabinoids impair working memory through astroglial CB1 receptor modulation of hippocampal LTD. Cell 148(5):1039–1050

    Article  PubMed  CAS  Google Scholar 

  37. Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310(5745):113–116

    Article  PubMed  CAS  Google Scholar 

  38. Serrano A, Haddjeri N, Lacaille JC, Robitaille R (2006) GABAergic network activation of glial cells underlies hippocampal heterosynaptic depression. J Neurosci 26(20):5370–5382

    Article  PubMed  CAS  Google Scholar 

  39. Zhang JM, Wang HK, Ye CQ, Ge W, Chen Y, Jiang ZL, Wu CP, Poo MM, Duan S (2003) ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40(5):971–982

    Article  PubMed  CAS  Google Scholar 

  40. Fellin T, Pascual O, Haydon PG (2006) Astrocytes coordinate synaptic networks: balanced excitation and inhibition. Physiology (Bethesda, MD) 21:208–215

    Article  CAS  Google Scholar 

  41. Henneberger C, Papouin T, Oliet SH, Rusakov DA (2010) Long-term potentiation depends on release of d-serine from astrocytes. Nature 463(7278):232–236

    Article  PubMed  CAS  Google Scholar 

  42. Muller CM, Best J (1989) Ocular dominance plasticity in adult cat visual cortex after transplantation of cultured astrocytes. Nature 342(6248):427–430

    Article  PubMed  CAS  Google Scholar 

  43. Muller CM (1990) Dark-rearing retards the maturation of astrocytes in restricted layers of cat visual cortex. Glia 3(6):487–494

    Article  PubMed  CAS  Google Scholar 

  44. Jones TA, Hawrylak N, Greenough WT (1996) Rapid laminar-dependent changes in GFAP immunoreactive astrocytes in the visual cortex of rats reared in a complex environment. Psychoneuroendocrinology 21(2):189–201

    Article  PubMed  CAS  Google Scholar 

  45. Schummers J, Yu H, Sur M (2008) Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science 320(5883):1638–1643

    Article  PubMed  CAS  Google Scholar 

  46. Woolsey TA, Van der Loos H (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex: the description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17(2):205–242

    Article  PubMed  CAS  Google Scholar 

  47. Hardingham N, Glazewski S, Pakhotin P, Mizuno K, Chapman PF, Giese KP, Fox K (2003) Neocortical long-term potentiation and experience-dependent synaptic plasticity require calcium/calmodulin-dependent protein kinase II autophosphorylation. J Neurosci 23(11):4428–4436

    PubMed  CAS  Google Scholar 

  48. Houades V, Koulakoff A, Ezan P, Seif I, Giaume C (2008) Gap junction-mediated astrocytic networks in the mouse barrel cortex. J Neurosci 28(20):5207–5217

    Article  PubMed  CAS  Google Scholar 

  49. Genoud C, Quairiaux C, Steiner P, Hirling H, Welker E, Knott GW (2006) Plasticity of astrocytic coverage and glutamate transporter expression in adult mouse cortex. PLoS Biol 4(11):e343

    Article  PubMed  CAS  Google Scholar 

  50. Wang X, Lou N, Xu Q, Tian G-F, Peng WG, Han X, Kang J, Takano T, Nedergaard M (2006) Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat Neurosci 9(6):816–823

    Article  PubMed  CAS  Google Scholar 

  51. Schipke CG, Haas B, Kettenmann H (2008) Astrocytes discriminate and selectively respond to the activity of a subpopulation of neurons within the barrel cortex. Cereb Cortex 18(10):2450–2459

    Article  PubMed  Google Scholar 

  52. Takata N, Mishima T, Hisatsune C, Nagai T, Ebisui E, Mikoshiba K, Hirase H (2011) Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo. J Neurosci 31(49):18155–18165

    Article  PubMed  CAS  Google Scholar 

  53. Swadlow HA (1990) Efferent neurons and suspected interneurons in S-1 forelimb representation of the awake rabbit: receptive fields and axonal properties. J Neurophysiol 63(6):1477–1498

    PubMed  CAS  Google Scholar 

  54. Benedetti B, Matyash V, Kettenmann H (2011) Astrocytes control GABAergic inhibition of neurons in the mouse barrel cortex. J Physiol 589(5):1159–1172

    Article  PubMed  CAS  Google Scholar 

  55. Oliet SHR, Bonfardin VDJ (2010) Morphological plasticity of the rat supraoptic nucleus—cellular consequences. Eur J Neurosci 32(12):1989–1994

    Article  PubMed  Google Scholar 

  56. Theodosis DT (2002) Oxytocin-secreting neurons: a physiological model of morphological neuronal and glial plasticity in the adult hypothalamus. Front Neuroendocrinol 23(1):101–135

    Article  PubMed  CAS  Google Scholar 

  57. Theodosis DT, Poulain DA, Oliet SHR (2008) Activity-dependent structural and functional plasticity of astrocyte–neuron interactions. Physiol Rev 88(3):983–1008

    Article  PubMed  CAS  Google Scholar 

  58. Mothet JP, Pollegioni L, Ouanounou G, Martineau M, Fossier P, Baux G (2005) Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter d-serine. Proc Nat Acad Sci USA 102(15):5606–5611

    Article  PubMed  CAS  Google Scholar 

  59. Panatier A, Theodosis DT, Mothet JP, Touquet B, Pollegioni L, Poulain DA, Oliet SH (2006) Glia-derived d-serine controls NMDA receptor activity and synaptic memory. Cell 125(4):775–784

    Article  PubMed  CAS  Google Scholar 

  60. Deleuze C, Alonso G, Lefevre IA, Duvoid-Guillou A, Hussy N (2005) Extrasynaptic localization of glycine receptors in the rat supraoptic nucleus: further evidence for their involvement in glia-to-neuron communication. Neuroscience 133(1):175–183

    Article  PubMed  CAS  Google Scholar 

  61. Hussy N, Deleuze C, Pantaloni A, Desarménien MG, Moos F (1997) Agonist action of taurine on glycine receptors in rat supraoptic magnocellular neurones: possible role in osmoregulation. J Physiol 502(Pt 3):609–621

    Article  PubMed  CAS  Google Scholar 

  62. Chapman DB, Theodosis DT, Montagnese C, Poulain DA, Morris JF (1986) Osmotic stimulation causes structural plasticity of neurone-glia relationships of the oxytocin but not vasopressin secreting neurones in the hypothalamic supraoptic nucleus. Neuroscience 17(3):679–686

    Article  PubMed  CAS  Google Scholar 

  63. Gordon GR, Baimoukhametova DV, Hewitt SA, Rajapaksha WR, Fisher TE, Bains JS (2005) Norepinephrine triggers release of glial ATP to increase postsynaptic efficacy. Nat Neurosci 8(8):1078–1086

    Article  PubMed  CAS  Google Scholar 

  64. Kapoor JR, Sladek CD (2000) Purinergic and adrenergic agonists synergize in stimulating vasopressin and oxytocin release. J Neurosci 20(23):8868–8875

    PubMed  CAS  Google Scholar 

  65. Kapoor JR, Sladek CD (2001) Substance P and NPY differentially potentiate ATP and adrenergic stimulated vasopressin and oxytocin release. Am J Physiol Regul Integr Comp Physiol 280(1):R69–R78

    PubMed  CAS  Google Scholar 

  66. Gordon GRJ, Iremonger KJ, Kantevari S, Ellis-Davies GCR, MacVicar BA, Bains JS (2009) Astrocyte-mediated distributed plasticity at hypothalamic glutamate synapses. Neuron 64(3):391–403

    Article  PubMed  CAS  Google Scholar 

  67. Hobson JA, Pace-Schott EF (2002) The cognitive neuroscience of sleep: neuronal systems, consciousness and learning. Nat Rev 3(9):679–693

    Article  CAS  Google Scholar 

  68. Borbely AA, Achermann P (1999) Sleep homeostasis and models of sleep regulation. J Biol Rhythms 14(6):557–568

    PubMed  CAS  Google Scholar 

  69. Womac AD, Burkeen JF, Neuendorff N, Earnest DJ, Zoran MJ (2009) Circadian rhythms of extracellular ATP accumulation in suprachiasmatic nucleus cells and cultured astrocytes. Eur J Neurosci 30(5):869–876

    Article  PubMed  Google Scholar 

  70. Parri HR, Crunelli V (2001) Pacemaker calcium oscillations in thalamic astrocytes in situ. NeuroReport 12(18):3897–3900

    Article  PubMed  CAS  Google Scholar 

  71. Parri HR, Crunelli V (2003) The role of Ca2+ in the generation of spontaneous astrocytic Ca2+ oscillations. Neuroscience 120(4):979–992

    Article  PubMed  CAS  Google Scholar 

  72. Pirttimaki TM, Hall SD, Parri HR (2011) Sustained neuronal activity generated by glial plasticity. J Neurosci 31(21):7637–7647

    Article  PubMed  CAS  Google Scholar 

  73. D’Ascenzo M, Fellin T, Terunuma M, Revilla-Sanchez R, Meaney DF, Auberson YP, Moss SJ, Haydon PG (2007) mGluR5 stimulates gliotransmission in the nucleus accumbens. Proc Nat Acad Sci 104(6):1995–2000

    Article  PubMed  CAS  Google Scholar 

  74. Pirttimaki TM, Parri HR (2012) Glutamatergic input-output properties of thalamic astrocytes. Neuroscience 205:18–28

    Article  PubMed  CAS  Google Scholar 

  75. Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW (1997) Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276(5316):1265–1268

    Article  PubMed  CAS  Google Scholar 

  76. Porkka-Heiskanen T, Strecker RE, McCarley RW (2000) Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience 99(3):507–517

    Article  PubMed  CAS  Google Scholar 

  77. Basheer R, Porkka-Heiskanen T, Strecker RE, Thakkar MM, McCarley RW (2000) Adenosine as a biological signal mediating sleepiness following prolonged wakefulness. Biol Signals Recept 9(6):319–327

    Article  PubMed  CAS  Google Scholar 

  78. Burnstock G, Krügel U, Abbracchio MP, Illes P (2011) Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 95(2):229–274

    Article  PubMed  CAS  Google Scholar 

  79. Halassa MM, Florian C, Fellin T, Munoz JR, Lee SY, Abel T, Haydon PG, Frank MG (2009) Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 61(2):213–219

    Article  PubMed  CAS  Google Scholar 

  80. Fellin T, Halassa MM, Terunuma M, Succol F, Takano H, Frank M, Moss SJ, Haydon PG (2009) Endogenous nonneuronal modulators of synaptic transmission control cortical slow oscillations in vivo. Proc Nat Acad Sci 106(35):15037–15042

    Article  PubMed  CAS  Google Scholar 

  81. Deng Q, Terunuma M, Fellin T, Moss SJ, Haydon PG (2011) Astrocytic activation of A1 receptors regulates the surface expression of NMDA receptors through a Src kinase dependent pathway. Glia 59(7):1084–1093

    Article  PubMed  Google Scholar 

  82. Mellen NM, Thoby-Brisson M (2012) Respiratory circuits: development, function and models. Curr Opin Neurobiol [Epub ahead of print]

  83. Smith JC, Abdala APL, Rybak IA, Paton JFR (2009) Structural and functional architecture of respiratory networks in the mammalian brainstem. Philos Trans R Soc B Biol Sci 364(1529):2577–2587

    Article  Google Scholar 

  84. GraB D, Pawlowski PG, Hirrlinger J, Papadopoulos N, Richter DW, Kirchhoff F, Hülsmann S (2004) Diversity of functional astroglial properties in the respiratory network. J Neurosci 24(6):1358–1365

    Article  CAS  Google Scholar 

  85. Neusch C, Papadopoulos N, Müller M, Maletzki I, Winter SM, Hirrlinger J, Handschuh M, Bähr M, Richter DW, Kirchhoff F, Hülsmann S (2006) Lack of the Kir4.1 channel subunit abolishes K+ buffering properties of astrocytes in the ventral respiratory group: impact on extracellular K+ regulation. J Neurophysiol 95(3):1843–1852

    Article  PubMed  CAS  Google Scholar 

  86. Hülsmann S, Oku Y, Zhang W, Richter DW (2000) Metabolic coupling between glia and neurons is necessary for maintaining respiratory activity in transverse medullary slices of neonatal mouse. Eur J Neurosci 12(3):856–862

    Article  PubMed  Google Scholar 

  87. Huxtable AG, Zwicker JD, Alvares TS, Ruangkittisakul A, Fang X, Hahn LB, Posse de Chaves E, Baker GB, Ballanyi K, Funk GD (2010) Glia contribute to the purinergic modulation of inspiratory rhythm-generating networks. J Neurosci 30(11):3947–3958

    Article  PubMed  CAS  Google Scholar 

  88. Schnell C, Fresemann J, Hülsmann S (2011) Determinants of functional coupling between astrocytes and respiratory neurons in the pre-bötzinger complex. PLoS ONE 6(10):e26309

    Article  PubMed  CAS  Google Scholar 

  89. Gourine AV, Kasymov V, Marina N, Tang F, Figueiredo MF, Lane S, Teschemacher AG, Spyer KM, Deisseroth K, Kasparov S (2010) Astrocytes control breathing through pH-dependent release of ATP. Science 329(5991):571–575

    Article  PubMed  CAS  Google Scholar 

  90. Ren K, Dubner R (2002) Descending modulation in persistent pain: an update. Pain 100(1–2):1–6

    Article  PubMed  Google Scholar 

  91. Fu K-Y, Light AR, Matsushima GK, Maixner W (1999) Microglial reactions after subcutaneous formalin injection into the rat hind paw. Brain Res 825(1–2):59–67

    Article  PubMed  CAS  Google Scholar 

  92. Fu KY, Light AR, Maixner W (2000) Relationship between nociceptor activity, peripheral edema, spinal microglial activation and long-term hyperalgesia induced by formalin. Neuroscience 101(4):1127–1135

    Article  PubMed  CAS  Google Scholar 

  93. Watkins LR, Milligan ED, Maier SF (2001) Glial activation: a driving force for pathological pain. Trends Neurosci 24(8):450–455

    Article  PubMed  CAS  Google Scholar 

  94. Raghavendra V, Tanga FY, DeLeo JA (2004) Complete Freunds adjuvant-induced peripheral inflammation evokes glial activation and proinflammatory cytokine expression in the CNS. Eur J Neurosci 20(2):467–473

    Article  PubMed  Google Scholar 

  95. Deleo JA, Tanga FY, Tawfik VL (2004) Neuroimmune activation and neuroinflammation in chronic pain and opioid tolerance/hyperalgesia. Neuroscientist 10(1):40–52

    Article  PubMed  CAS  Google Scholar 

  96. Marchand F, Perretti M, McMahon SB (2005) Role of the Immune system in chronic pain. Nat Rev 6(7):521–532

    CAS  Google Scholar 

  97. Watkins LR, Hutchinson MR, Milligan ED, Maier SF (2007) “Listening” and “talking” to neurons: implications of immune activation for pain control and increasing the efficacy of opioids. Brain Res Rev 56(1):148–169

    Article  PubMed  CAS  Google Scholar 

  98. Piao ZG, Cho I-H, Park CK, Hong JP, Choi S-Y, Lee SJ, Lee S, Park K, Kim JS, Oh SB (2006) Activation of glia and microglial p38 MAPK in medullary dorsal horn contributes to tactile hypersensitivity following trigeminal sensory nerve injury. Pain 121(3):219–231

    Article  PubMed  CAS  Google Scholar 

  99. Guo W, Wang H, Watanabe M, Shimizu K, Zou S, LaGraize SC, Wei F, Dubner R, Ren K (2007) Glial–cytokine–neuronal interactions underlying the mechanisms of persistent pain. J Neurosci 27(22):6006–6018

    Article  PubMed  CAS  Google Scholar 

  100. Ren K, Dubner R (2008) Neuron-glia crosstalk gets serious: role in pain hypersensitivity. Curr Opin Anaesthesiol 21(5):570–579

    Article  PubMed  Google Scholar 

  101. Milligan ED, Mehmert KK, Hinde JL, Harvey LO Jr, Martin D, Tracey KJ, Maier SF, Watkins LR (2000) Thermal hyperalgesia and mechanical allodynia produced by intrathecal administration of the human immunodeficiency virus-1 (HIV-1) envelope glycoprotein, gp120. Brain Res 861(1):105–116

    Article  PubMed  CAS  Google Scholar 

  102. Milligan ED, Twining C, Chacur M, Biedenkapp J, O’Connor K, Poole S, Tracey K, Martin D, Maier SF, Watkins LR (2003) Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats. J Neurosci 23(3):1026–1040

    PubMed  CAS  Google Scholar 

  103. Sweitzer S, Martin D, DeLeo JA (2001) Intrathecal interleukin-1 receptor antagonist in combination with soluble tumor necrosis factor receptor exhibits an anti-allodynic action in a rat model of neuropathic pain. Neuroscience 103(2):529–539

    Article  PubMed  CAS  Google Scholar 

  104. Ikeda H, Heinke B, Ruscheweyh R, Sandkuhler J (2003) Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science 299(5610):1237–1240

    Article  PubMed  CAS  Google Scholar 

  105. Ikeda H, Murase K (2004) Glial nitric oxide-mediated long-term presynaptic facilitation revealed by optical imaging in rat spinal dorsal horn. J Neurosci 24(44):9888–9896

    Article  PubMed  CAS  Google Scholar 

  106. Ikeda H, Tsuda M, Inoue K, Murase K (2007) Long-term potentiation of neuronal excitation by neuron-glia interactions in the rat spinal dorsal horn. Eur J Neurosci 25(5):1297–1306

    Article  PubMed  Google Scholar 

  107. Foley J, McIver S, Haydon P (2011) Gliotransmission modulates baseline mechanical nociception. Mol Pain 7(1):93

    Article  PubMed  CAS  Google Scholar 

  108. Wei F, Guo W, Zou S, Ren K, Dubner R (2008) Supraspinal glial-neuronal interactions contribute to descending pain facilitation. J Neurosci 28(42):10482–10495

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to tanks Lorena Pont-Lezica for her helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Pascual.

Additional information

Special Issue: In Honor of Leif Hertz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben Achour, S., Pascual, O. Astrocyte–Neuron Communication: Functional Consequences. Neurochem Res 37, 2464–2473 (2012). https://doi.org/10.1007/s11064-012-0807-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0807-0

Keywords

Navigation