Skip to main content
Log in

Lysophosphatidylinositol Stimulates [35S]GTPγS Binding in the Rat Prefrontal Cortex and Hippocampus

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Lysophosphatidylinositol (LPI) is a biologically active lipid that produces a number of responses in cultured cells, and has been suggested to have neuroprotective properties in vivo. Some of the actions of LPI are mediated by G-protein coupled receptors, but it is not known whether G-protein coupled receptor-mediated responses can be seen in intact brain tissue. In consequence, in the present study, we investigated autoradiographically whether LPI increased the [35S]GTPγS binding level in brain tissue slices. In standard assay conditions, where as a positive control a robust response to cannabinoid receptor activation by the agonist ligand CP55,940 was seen, there was no increase in the autoradiographic density over basal produced by LPI. However, when the conditions were modified (incubation at 4°C rather than at 25°C, incubation time increased to 3 h, GDP concentration reduced from 2 to 0.1 mM), a significant increase in [35S]GTPγS autoradiographic density in response to 10 μM LPI was seen in the prefrontal cortex, hippocampus, and cortex at the level of the hippocampus, although the degree of increase was small and very variable. No significant increases were seen in the hypothalamus or cerebellum. It is concluded that LPI, in the right conditions, can activate a sufficient number of G-proteins in the rat prefrontal cortex and hippocampus to produce a response in the [35S]GTPγS autoradiographic assay of G-protein coupled receptor function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Singaravelu K, Lohr C, Deitmer JW (2006) Regulation of store-operated calcium entry by calcium-independent phospholipase A2 in rat cerebellar astrocytes. J Neurosci 26:9579–9592

    Article  PubMed  CAS  Google Scholar 

  2. Obara Y, Ueno S, Yanagihata Y et al (2011) Lysophosphatidylinositol causes neurite retraction via GPR55, G13 and RhoA in PC12 cells. PLoS One 6:e24284

    Article  PubMed  CAS  Google Scholar 

  3. Bondarenko A, Waldeck-Weiermair M, Naghdi S et al (2010) GPR55-dependent and -independent ion signalling in response to lysophosphatidylinositol in endothelial cells. Br J Pharmacol 161:308–320

    Article  PubMed  CAS  Google Scholar 

  4. Piñeiro R, Maffucci T, Falasca M (2011) The putative cannabinoid receptor GPR55 defines a novel autocrine loop in cancer cell proliferation. Oncogene 30:142–152

    Article  PubMed  Google Scholar 

  5. Bondarenko AI, Malli R, Graier WF (2011) The GPR55 agonist lysophosphatidylinositol acts as an intracellular messenger and bidirectionally modulates Ca2+-activated large-conductance K+ channels in endothelial cells. Pflugers Arch 461:177–189

    Article  PubMed  CAS  Google Scholar 

  6. Oka S, Kimura S, Toshida T et al (2010) Lysophosphatidylinositol induces rapid phosphorylation of p38 mitogen-activated protein kinase and activating transcription factor 2 in HEK293 cells expressing GPR55 and IM-9 lymphoblastoid cells. J Biochem 147:671–678

    Article  PubMed  CAS  Google Scholar 

  7. Whyte LS, Ryberg E, Sims NA et al (2009) The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo. Proc Natl Acad Sci USA 106:16511–16516

    Article  PubMed  CAS  Google Scholar 

  8. Falasca M, Corda D (1994) Elevated levels and mitogenic activity of lysophosphatidylinositol in k-ras-transformed epithelial cells. Eur J Biochem 221:383–389

    Article  PubMed  CAS  Google Scholar 

  9. Ford LA, Roelofs AJ, Anavi-Goffer S et al (2010) A role for L-α-lysophosphatidylinositol and GPR55 in the modulation of migration, orientation and polarization of human breast cancer cells. Br J Pharmacol 160:762–771

    Article  PubMed  CAS  Google Scholar 

  10. Blondeau N, Lauritzen I, Widmann C et al (2002) A potent protective role of lysophospholipids against global cerebral ischemia and glutamate excitotoxicity in neuronal cultures. J Cereb Blood Flow Metab 22(7):821–834

    Article  PubMed  CAS  Google Scholar 

  11. Oka S, Nakajima K, Yamashita A et al (2007) Identification of GPR55 as a lysophosphatidylinositol receptor. Biochem Biophys Res Commun 362:928–934

    Article  PubMed  CAS  Google Scholar 

  12. Henstridge CM, Balenga NAB, Ford LA et al (2009) The GPR55 ligand L-α-lysophosphatidylinositol promotes RhoA-dependent Ca2+ signaling and NFAT activation. FASEB J 23:183–193

    Article  PubMed  CAS  Google Scholar 

  13. Kapur A, Zhao P, Sharir H et al (2009) Atypical responsiveness of the orphan receptor GPR55 to cannabinoid ligands. J Biol Chem 284:29817–29827

    Article  PubMed  CAS  Google Scholar 

  14. Sim LJ, Selley DE, Childers SR (1995) In vitro autoradiography of receptor-activated G proteins in rat brain by agonist-stimulated guanylyl 5′-[γ-[35S]thio]-triphosphate binding. Proc Natl Acad Sci USA 92:7242–7246

    Article  PubMed  CAS  Google Scholar 

  15. Waeber C, Chiu ML (1999) In vitro autoradiographic visualization of guanosine-5′-O-(3-[35S]thio)triphosphate binding stimulated by sphingosine 1-phosphate and lysophosphatidic acid. J Neurochem 73:1212–1221

    Article  PubMed  CAS  Google Scholar 

  16. Sóvágó J, Dupuis DS, Gulyás B, Hall H (2001) An overview on functional receptor autoradiography using [35S]GTPγS. Brain Res Rev 38:149–164

    Article  PubMed  Google Scholar 

  17. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press, Orlando,FL

    Google Scholar 

  18. Sim LJ, Hampson RE, Deadwyler SA et al (1996) Effects of chronic treatment with ∆9-tetrahydrocannabinol on cannabinoid-stimulated [35S]GTPγS autoradiography in rat brain. J Neurosci 16:8057–8066

    PubMed  CAS  Google Scholar 

  19. Rodríguez-Gaztelumendi A, Rojo M, Pazos A, Díaz A (2009) Altered CB1 receptor-signaling in prefrontal cortex from an animal model of depression is reversed by chronic fluoxetine. J Neurochem 108:1423–1433

    Article  PubMed  Google Scholar 

  20. Rojo ML, Soderstrom I, Fowler CJ (2011) Residual effects of focal brain ischaemia upon cannabinoid CB1 receptor density and functionality in female rats. Brain Res 1373:195–201

    Article  PubMed  CAS  Google Scholar 

  21. Harrison C, Trayner JR (2003) The [35S]GTPγS binding assay: approaches and applications in pharmacology. Life Sci 74:489–508

    Article  PubMed  CAS  Google Scholar 

  22. Happe HK, Bylund DB, Murrin LC (2001) Agonist-stimulated [35S]GTPγS autoradiography: optimization for high sensitivity. Eur J Pharmacol 422:1–13

    Article  PubMed  CAS  Google Scholar 

  23. Sharir H, Abood ME (2010) Pharmacological characterization of GPR55, a putative cannabinoid receptor. Pharmacol Ther 126:301–313

    Article  PubMed  CAS  Google Scholar 

  24. Henstridge CM, Balenga NAB, Kargl J et al (2011) Minireview: recent developments in the physiology and pathology of the lysophosphatidylinositol—sensitive receptor GPR55. Mol Endocrinol 25:1835–1848

    Article  PubMed  CAS  Google Scholar 

  25. Ryberg E, Larsson N, Sjögren S et al (2007) The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 152:1092–1101

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

MLR was a Marie Curie Research Fellow (Contract no. MTKD-CT-2006-039039, under the FP6 Transfer of Knowledge scheme) and was thereafter supported by the Swedish Science Research council (Grant no. 12158 to CJF) during the conducting of these experiments. The authors would also like to thank the Research Funds of the Medical Faculty, Umeå University for research support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Fowler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rojo, M.L., Rodriguez-Gaztelumendi, A. & Fowler, C.J. Lysophosphatidylinositol Stimulates [35S]GTPγS Binding in the Rat Prefrontal Cortex and Hippocampus. Neurochem Res 37, 1037–1042 (2012). https://doi.org/10.1007/s11064-012-0704-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0704-6

Keywords

Navigation