Skip to main content

Advertisement

Log in

Dendrite Formation of Cerebellar Purkinje Cells

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

During postnatal cerebellar development, Purkinje cells form the most elaborate dendritic trees among neurons in the brain, which have been of great interest to many investigators. This article overviews various examples of cellular and molecular mechanisms of formation of Purkinje cell dendrites as well as the methodological aspects of investigating those mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bower JM, Parsons LM (2003) Rethinking the “lesser brain”. Sci Am 289:50–57

    Article  PubMed  Google Scholar 

  2. Ito M (1984) The cerebellum and neural control. Raven Press, New York

    Google Scholar 

  3. Strick PL, Dum RP, Fiez J (2009) Cerebellum and nonmotor function. Annu Rev Neurosci 32:413–434

    Article  CAS  PubMed  Google Scholar 

  4. Altman J, Bayer SA (1997) Development of the cerebellar system: in relation to its evolution, structure, and functions. CRC Press Inc., New York

    Google Scholar 

  5. Ramon y Cajal S (1991; 1955 reprint) Histologie du Systeme Nerveux de l’Homme et des Vertebres, vol 2. Institute Ramon y Cajal, Madrid, pp 80–106

  6. Ito M (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 81:1143–1195

    CAS  PubMed  Google Scholar 

  7. Hendelman WJ, Aggerwal AS (1980) The Purkinje neuron: I. a Golgi study of its development in the mouse and in culture. J Comp Neurol 193:1063–1079

    Article  CAS  PubMed  Google Scholar 

  8. Armengol J-A, Sotelo C (1991) Early dendritic development of Purkinje cells in the rat cerebellum. A light and electron microscopic study using axonal tracing in ‘in vitro’ slices. Brain Res Dev Brain Res 64:95–114

    Article  CAS  PubMed  Google Scholar 

  9. Tanaka M, Maeda N, Noda M et al (2003) A chondroitin sulfate proteoglycan PTPζ/RPTPβ regulates the morphogenesis of Purkinje cell dendrites in the developing cerebellum. J Neurosci 23:2804–2814

    CAS  PubMed  Google Scholar 

  10. Seil FJ (1972) Neuronal groups and fiber patterns in cerebellar tissue cultures. Brain Res 42:33–51

    Article  CAS  PubMed  Google Scholar 

  11. Gähwiler BH (1981) Organotypic monolayer cultures of nervous tissue. J Neurosci Methods 4:329–342

    Article  PubMed  Google Scholar 

  12. Yamamoto N, Kurotani T, Toyama K (1989) Neural connections between the lateral geniculate nucleus and visual cortex in vitro. Science 245:192–194

    Article  CAS  PubMed  Google Scholar 

  13. Yamamoto N, Yamada K, Kurotani T et al (1992) Laminar specificity of extrinsic cortical connections studied in coculture preparations. Neuron 9:217–228

    Article  CAS  PubMed  Google Scholar 

  14. Stoppini L, Buchs P-A, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37:173–182

    Article  CAS  PubMed  Google Scholar 

  15. Heimrich B, Frotscher M (1994) Slice cultures as a tool to study neuronal development and the formation of specific connections. Neurosci Protoc 94-030-05-01-09

  16. Freshney RI (1987) Three-dimensional culture systems. In: Culture of animal cells: a manual of basic technique, 2nd edn. Alan R. Liss Inc., New York, pp 297–307

  17. Tanaka M, Tomita A, Yoshida S et al (1994) Observation of the highly organized development of granule cells in rat cerebellar organotypic cultures. Brain Res 641:319–327

    Article  CAS  PubMed  Google Scholar 

  18. Tauer U, Volk B, Heimrich B (1996) Differentiation of Purkinje cells in cerebellar slice cultures: an immunocytochemical and Golgi EM study. Neuropathol Appl Neurobiol 22:361–369

    Article  CAS  PubMed  Google Scholar 

  19. Dusart I, Airaksinen MS, Sotelo C (1997) Purkinje cell survival and axonal regeneration are age dependent: an in vitro study. J Neurosci 17:3710–3726

    CAS  PubMed  Google Scholar 

  20. Kapfhammer JP (2004) Cellular and molecular control of dendritic growth and development of cerebellar Purkinje cells. Prog Histochem Cytochem 39:131–182

    Article  PubMed  Google Scholar 

  21. Metzger F, Kapfhammer JP (2000) Protein kinase C activity modulates dendritic differentiation of rat Purkinje cells in cerebellar slice cultures. Eur J Neurosci 12:1993–2005

    Article  CAS  PubMed  Google Scholar 

  22. Sakamoto H, Ukena K, Tsutsui K (2001) Effects of progesterone synthesized de novo in the developing Purkinje cell on its dendritic growth and synaptogenesis. J Neurosci 21:6221–6232

    CAS  PubMed  Google Scholar 

  23. Tanaka M, Duncan RS, McClung N et al (2006) Homer proteins control neuronal differentiation through IP3 receptor signaling. FEBS Lett 580:6145–6150

    Article  CAS  PubMed  Google Scholar 

  24. Boukhtouche F, Janmaat S, Vodjdani G et al (2006) Retinoid-related orphan receptor α controls the early steps of Purkinje cell dendritic differentiation. J Neurosci 26:1531–1538

    Article  CAS  PubMed  Google Scholar 

  25. Poulain FE, Chauvin S, Wehrlé R et al (2008) SCLIP is crucial for the formation and development of the Purkinje cell dendritic arbor. J Neurosci 28:7387–7398

    Article  CAS  PubMed  Google Scholar 

  26. Fenili D, De Boni U (2003) Organotypic slices in vitro: repeated, same-cell, high-resolution tracking of nuclear and cytoplasmic fluorescent signals in live, transfected cerebellar neurons by confocal microscopy. Brain Res Brain Res Protoc 11:101–110

    Article  PubMed  Google Scholar 

  27. Lordkipanidze T, Dunaevsky A (2005) Purkinje cell dendrites grow in alignment with Bergmann glia. Glia 51:229–234

    Article  PubMed  Google Scholar 

  28. Tanaka M, Yanagawa Y, Obata K et al (2006) Dendritic morphogenesis of cerebellar Purkinje cells through extension and retraction revealed by long-term tracking of living cells in vitro. Neuroscience 141:663–674

    Article  CAS  PubMed  Google Scholar 

  29. Tamamaki N, Yanagawa Y, Tomioka R et al (2003) Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 467:60–79

    Article  CAS  PubMed  Google Scholar 

  30. Yamanaka H, Yanagawa Y, Obata K (2004) Development of stellate and basket cells and their apoptosis in mouse cerebellar cortex. Neurosci Res 50:13–22

    Article  PubMed  Google Scholar 

  31. Dunaevsky A, Tashiro A, Majewska A et al (1999) Developmental regulation of spine motility in the mammalian central nervous system. Proc Natl Acad Sci 96:13438–13443

    Article  CAS  PubMed  Google Scholar 

  32. Sdrulla AD, Linden DJ (2006) Dynamic imaging of cerebellar Purkinje cells reveals a population of filopodia which cross-link dendrites during early postnatal development. Cerebellum 5:105–115

    Article  PubMed  Google Scholar 

  33. Hirai H (2008) Progress in transduction of cerebellar Purkinje cells in vivo using viral vectors. Cerebellum 7:273–278

    Article  CAS  PubMed  Google Scholar 

  34. Hashimoto M, Aruga J, Hosoya Y et al (1996) A neural cell-type-specific expression system using recombinant adenovirus vectors. Hum Gene Ther 7:149–158

    Article  CAS  PubMed  Google Scholar 

  35. Agudo M, Trejo JL, Lim F et al (2002) Highly efficient and specific gene transfer to Purkinje cells in vivo using a herpes simplex virus I amplicon. Hum Gene Ther 13:665–674

    Article  CAS  PubMed  Google Scholar 

  36. Gimenez-Cassina A, Lim E, Diaz-Nido J (2007) Gene transfer into Purkinje cells using herpes viral amplicon vectors in cerebellar cultures. Neurochem Int 50:181–188

    Article  CAS  PubMed  Google Scholar 

  37. Xia H, Mao Q, Eliason SL et al (2004) RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 10:816–820

    Article  CAS  PubMed  Google Scholar 

  38. Kaemmerer WF, Reddy RG, Warlick CA et al (2000) In vivo transduction of cerebellar Purkinje cells using adeno-associated virus vectors. Mol Ther 2:446–457

    Article  CAS  PubMed  Google Scholar 

  39. Alisky JM, Hughes SM, Sauter SL et al (2000) Transduction of murine cerebellar neurons with recombinant FIV and AAV5 vectors. Neuroreport 11:2669–2673

    Article  CAS  PubMed  Google Scholar 

  40. Broekman ML, Comer LA, Hyman BT et al (2006) Adeno-associated virus vectors serotyped with AAV8 capsid are more efficient than AAV-1 or -2 serotypes for widespread gene delivery to the neonatal mouse brain. Neuroscience 138:501–510

    Article  CAS  PubMed  Google Scholar 

  41. Torashima T, Okoyama S, Nishizaki T et al (2006) In vivo transduction of murine cerebellar Purkinje cells by HIV-derived lentiviral vectors. Brain Res 1082:11–22

    Article  CAS  PubMed  Google Scholar 

  42. Croci C, Fasano S, Superchi D et al (2006) Cerebellar neurons and glial cells are transducible by lentiviral vectors without decrease of cerebellar functions. Dev Neurosci 28:216–221

    Article  CAS  PubMed  Google Scholar 

  43. Oberdick J, Smeyne RJ, Mann JR et al (1990) A promoter that drives transgenic expression in cerebellar Purkinje and retinal bipolar neurons. Science 248:223–226

    Article  CAS  PubMed  Google Scholar 

  44. Zhang X, Baader SL, Bian F et al (2001) High level Purkinje cell specific expression of green fluorescent protein in transgenic mice. Histochem Cell Biol 115:455–464

    CAS  PubMed  Google Scholar 

  45. Tomomura M, Rice DS, Morgan JI et al (2001) Purification of Purkinje cells by fluorescence-activated cell sorting from transgenic mice that express green fluorescent protein. Eur J Neurosci 14:57–63

    Article  CAS  PubMed  Google Scholar 

  46. Arnold D, Feng L, Kim J et al (1994) A strategy for the analysis of gene expression during neural development. Proc Natl Acad Sci 91:9970–9974

    Article  CAS  PubMed  Google Scholar 

  47. Murphy RC, Messer A (2001) Gene transfer methods for CNS organotypic cultures: a comparison of three nonviral methods. Mol Ther 3:113–121

    Article  CAS  PubMed  Google Scholar 

  48. Shima Y, Kengaku M, Hirano T et al (2004) Regulation of dendritic maintenance and growth by a mammalian 7-pass transmembrane cadherin. Dev Cell 7:205–216

    Article  CAS  PubMed  Google Scholar 

  49. Olofsson J, Nolkrantz K, Ryttsén F et al (2003) Single-cell electroporation. Curr Opin Biotech 14:29–34

    Article  CAS  PubMed  Google Scholar 

  50. Nolkrantz K, Farre C, Brederlau A et al (2001) Electroporation of single cells and tissues with an electrolyte-filled capillary. Anal Chem 73:4469–4477

    Article  CAS  PubMed  Google Scholar 

  51. Haas K, Sin W–C, Javaherian A et al (2001) Single-cell electroporation for gene transfer in vivo. Neuron 29:583–591

    Article  CAS  PubMed  Google Scholar 

  52. Rae JL, Levis RA (2002) Single-cell electroporation. Pflügers Arch 443:664–670

    Article  CAS  PubMed  Google Scholar 

  53. Rathenberg J, Nevian T, Witzemann V (2003) High-efficiency transfection of individual neurons using modified electrophysiology techniques. J Neurosci Methods 126:91–98

    Article  PubMed  Google Scholar 

  54. Huang Y, Rubinsky B (1999) Micro-electroporation: improving the efficiency and understanding of electrical permeabilization of cells. Biomed Microdevices 2:145–150

    Article  Google Scholar 

  55. Khine M, Lau A, Ionescu-Zanetti C et al (2005) A single cell electroporation chip. Lab Chip 5:38–43

    Article  CAS  PubMed  Google Scholar 

  56. Vassanelli S, Bandiera L, Borgo M et al (2008) Space and time-resolved gene expression experiments on cultured mammalian cells by a single-cell electroporation microarray. N Biotechnol 25:55–67

    Article  CAS  PubMed  Google Scholar 

  57. Boudes M, Pieraut S, Valmier J et al (2008) Single-cell electroporation of adult sensory neurons for gene screening with RNA interference mechanism. J Neurosci Methods 170:204–211

    Article  CAS  PubMed  Google Scholar 

  58. Tanaka M, Yanagawa Y, Hirashima N (2009) Transfer of small interfering RNA by single-cell electroporation in cerebellar cell cultures. J Neurosci Methods 178:80–86

    Article  CAS  PubMed  Google Scholar 

  59. Altman J, Anderson WJ (1972) Experimental reorganization of the cerebellar cortex. I. Morphological effects of eliminating all microneurons with prolonged X-irradiation started at birth. J Comp Neurol 146:355–406

    Article  CAS  PubMed  Google Scholar 

  60. Rakic P, Sidman RL (1973) Organization of cerebellar cortex secondary to deficit of granule cells in weaver mutant mice. J Comp Neurol 152:133–162

    Article  CAS  PubMed  Google Scholar 

  61. Sotelo C (1975) Anatomical, physiological and biochemical studies of the cerebellum from mutant mice. II. Morphological study of cerebellar cortical neurons and circuits in the weaver mouse. Brain Res 94:19–44

    Article  CAS  PubMed  Google Scholar 

  62. Berry M, Bradley P, Borges S (1978) Environmental and genetic determinants of connectivity in the central nervous system—an approach through dendritic field analysis. Prog Brain Res 48:133–146

    Article  CAS  PubMed  Google Scholar 

  63. Baptista CA, Hatten ME, Blazeski R et al (1994) Cell–cell interactions influence survival and differentiation of purified Purkinje cells in vitro. Neuron 12:243–260

    Article  CAS  PubMed  Google Scholar 

  64. Hirai H, Launey T (2000) The regulatory connection between the activity of granule cell NMDA receptors and dendritic differentiation of cerebellar Purkinje cells. J Neurosci 20:5217–5224

    CAS  PubMed  Google Scholar 

  65. McAllister AK (2000) Cellular and molecular mechanisms of dendrite growth. Cereb Cortex 10:963–973

    Article  CAS  PubMed  Google Scholar 

  66. Wong RO, Ghosh A (2002) Activity-dependent regulation of dendritic growth and patterning. Nat Rev Neurosci 3:803–812

    Article  CAS  PubMed  Google Scholar 

  67. Miller FD, Kaplan DR (2003) Signaling mechanisms underlying dendrite formation. Curr Opin Neurobiol 13:391–398

    Article  CAS  PubMed  Google Scholar 

  68. Schilling K, Dickinson MH, Connor JA et al (1991) Electrical activity in cerebellar cultures determines Purkinje cell dendritic growth patterns. Neuron 7:891–902

    Article  CAS  PubMed  Google Scholar 

  69. Cohen-Cory S, Dreyfus CF, Black IB (1991) NGF and excitatory neurotransmitters regulate survival and morphogenesis of cultured cerebellar Purkinje cells. J Neurosci 11:462–471

    CAS  PubMed  Google Scholar 

  70. Catania MV, Bellomo M, Giorgi-Gerevini VD et al (2001) Endogenous activation of group-I metabotropic glutamate receptors is required for differentiation and survival of cerebellar Purkinje cells. J Neurosci 21:7664–7673

    CAS  PubMed  Google Scholar 

  71. Adcock KH, Metzger F, Kapfhammer JP (2004) Purkinje cell dendritic tree development in the absence of excitatory neurotransmission and of brain-derived neurotrophic factor in organotypic slice cultures. Neuroscience 127:137–145

    Article  CAS  PubMed  Google Scholar 

  72. Mount HTJ, Dean DO, Alberch J et al (1995) Glial cell line-derived neurotrophic factor promotes the survival and morphologic differentiation of Purkinje cells. Proc Natl Acad Sci 92:9092–9096

    Article  CAS  PubMed  Google Scholar 

  73. Schwartz PM, Borghesani PR, Levy RL et al (1997) Abnormal cerebellar development and foliation in BDNF −/− mice reveals a role for neurotrophins in CNS patterning. Neuron 19:269–281

    Article  CAS  PubMed  Google Scholar 

  74. Furutani K, Okubo Y, Kakizawa S et al (2006) Postsynaptic inositol 1,4,5-trisphosphate signaling maintains presynaptic function of parallel fiber-Purkinje cell synapses via BDNF. Proc Natl Acad Sci 103:8528–8533

    Article  CAS  PubMed  Google Scholar 

  75. Hisatsune C, Kuroda Y, Akagi T et al (2006) Inositol 1,4,5-trisphosphate receptor type 1 in granule cells, not in Purkinje cells, regulates the dendritic morphology of Purkinje cells through brain-derived neurotrophic factor production. J Neurosci 26:10916–10924

    Article  CAS  PubMed  Google Scholar 

  76. Tsutsui K, Ukena K, Usui M et al (2000) Novel brain function: biosynthesis and actions of neurosteroids in neurons. Neurosci Res 36:261–273

    Article  CAS  PubMed  Google Scholar 

  77. Compagnone NA, Mellon SH (2000) Neurosteroids: biosynthesis and function of these novel neuromodulators. Front Neuroendocrinol 21:1–56

    Article  CAS  PubMed  Google Scholar 

  78. Tsutsui K (2008) Neurosteroids in the Purkinje cell: biosynthesis, mode of action and functional significance. Mol Neurobiol 37:116–125

    Article  CAS  PubMed  Google Scholar 

  79. Sakamoto H, Mezaki Y, Shikimi H et al (2003) Dendritic growth and spine formation in response to estrogen in the developing Purkinje cell. Endocrinology 144:4466–4477

    Article  CAS  PubMed  Google Scholar 

  80. Sasahara K, Shikimi H, Haraguchi S et al (2007) Mode of action and functional significance of estrogen-inducing dendritic growth, spinogenesis, and synaptogenesis in the developing Purkinje cell. J Neurosci 27:7408–7417

    Article  CAS  PubMed  Google Scholar 

  81. Vincent J, Legrand C, Rabié A et al. (1982–1983) Effects of thyroid hormone on synaptogenesis in the molecular layer of the developing cerebellum. J Physiol 78:729–738

    Google Scholar 

  82. Kimura-Kuroda J, Nagata I, Negishi-Kato M et al (2002) Thyroid hormone-dependent development of mouse cerebellar Purkinje cells in vitro. Brain Res Dev Brain Res 137:55–65

    Article  CAS  PubMed  Google Scholar 

  83. Heuer H, Mason CA (2003) Thyroid hormone induces cerebellar Purkinje cell dendritic development via the thyroid hormone receptor a1. J Neurosci 23:10604–10612

    CAS  PubMed  Google Scholar 

  84. Bishop GA (1990) Neuromodulatory effects of corticotropin releasing factor on cerebellar Purkinje cells: an in vivo study in the cat. Neuroscience 39:251–257

    Article  CAS  PubMed  Google Scholar 

  85. Palkovits M, Leranth C, Gorcs T et al (1987) Corticotropin-releasing factor in the olivocerebellar tract of rats: demonstration by light-and electron-microscopic immunohistochemistry and in situ hybridization histochemistry. Proc Natl Acad Sci 84:3911–3915

    Article  CAS  PubMed  Google Scholar 

  86. Swinny JD, Kalicharan D, Gramsbergen A et al (2002) The localisation of urocortin in the adult rat cerebellum: a light and electron microscopic study. Neuroscience 114:891–903

    CAS  PubMed  Google Scholar 

  87. Vaughan J, Donaldson C, Bittencourt J et al (1995) Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature 378:233–234

    Article  Google Scholar 

  88. Bishop GA, Seelandt CM, King JS (2000) Cellular localization of corticotropin releasing factor receptors in the adult mouse cerebellum. Neuroscience 101:1083–1092

    Article  CAS  PubMed  Google Scholar 

  89. King JS, Bishop GA (2002) The distribution and cellular localization of CRF-R1 in the vermis of the postnatal mouse cerebellum. Exp Neurol 178:175–185

    Article  CAS  PubMed  Google Scholar 

  90. Swinny JD, Kalicharan D, Blaauw EH et al (2003) Corticotropin-releasing factor receptor types 1 and 2 are differentially expressed in pre- and post-synaptic elements in the post-natal developing rat cerebellum. Eur J Neurosci 18:549–562

    Article  CAS  PubMed  Google Scholar 

  91. Swinny JD, Metzger F, IJkema-Paassen J et al (2004) Corticotropin-releasing factor and urocortin differentially modulate rat Purkinje cell dendritic outgrowth and differentiation in vitro. Eur J Neurosci 19:1749–1758

    Article  CAS  PubMed  Google Scholar 

  92. Barclay J, Balaguero N, Mione M et al (2001) Ducky mouse phenotype of epilepsy and ataxia is associated with mutations in the Cacna2d2 gene and decreased calcium channel current in cerebellar Purkinje cells. J Neurosci 21:6095–6104

    CAS  PubMed  Google Scholar 

  93. Brodbeck J, Davies A, Courtney J-M et al (2002) The ducky mutation in Cacna2d2 results in altered Purkinje cell morphology and is associated with the expression of a truncated α2δ-2 protein with abnormal function. J Biol Chem 277:7684–7693

    Article  CAS  PubMed  Google Scholar 

  94. Bandtlow CE, Zimmermann DR (2000) Proteoglycans in the developing brain: new conceptual insights for old proteins. Physiol Rev 80:1267–1290

    CAS  PubMed  Google Scholar 

  95. Tonks NK (2006) Protein tyrosine phosphatases: from genes, to function, to disease. Nat. Rev. Mol. Cell Biol. 7:833–846

    Article  CAS  PubMed  Google Scholar 

  96. Maeda N (2007) A chondroitin sulfate proteoglycan, PTPζ/phosphacan, and neuronal network formation. In: Weiss ML (ed) Neuronal network research horizons. Nova Science Publishers, Inc., New York, pp 181–205

    Google Scholar 

  97. Maeda N, Matsui F, Oohira A (1992) A chondroitin sulfate proteoglycan that is developmentally regulated in the cerebellar mossy fiber system. Dev Biol 151:564–574

    Article  CAS  PubMed  Google Scholar 

  98. Canoll PD, Barnea G, Levy JB et al (1993) The expression of a novel receptor-type tyrosine phosphatase suggests a role in morphogenesis and plasticity of the nervous system. Brain Res Dev Brain Res 75:293–298

    Article  CAS  PubMed  Google Scholar 

  99. Snyder SE, Li J, Schauwecker PE et al (1996) Comparison of RPTPζ/β, phosphacan, and trkB mRNA expression in the developing and adult rat nervous system and induction of RPTPζ/β and phosphacan mRNA following brain injury. Brain Res Mol Brain Res 40:79–96

    Article  CAS  PubMed  Google Scholar 

  100. Matsumoto K, Wanaka A, Takatsuji K et al (1994) A novel family of heparin-binding growth factors, pleiotrophin and midkine, is expressed in the developing rat cerebral cortex. Brain Res Dev Brain Res 79:229–241

    Article  CAS  PubMed  Google Scholar 

  101. Wewetzer K, Rauvala H, Unsicker K (1995) Immunocytochemical localization of the heparin-binding growth-associated molecule (HB-GAM) in the developing and adult rat cerebellar cortex. Brain Res 693:31–38

    Article  CAS  PubMed  Google Scholar 

  102. Xiao B, Tu JC, Worley PF (2000) Homer: a link between neural activity and glutamate receptor function. Curr Opin Neurobiol 10:370–374

    Article  CAS  PubMed  Google Scholar 

  103. Ehrengruber MU, Kato A, Inokuchi K et al (2004) Homer/Vesl proteins and their roles in CNS neurons. Mol Neurobiol 29:213–227

    Article  CAS  PubMed  Google Scholar 

  104. Duncan RS, Hwang S-Y, Koulen P (2005) Effects of Vesl/Homer proteins on intracellular signaling. Exp. Biol. Med. 230:527–535

    CAS  Google Scholar 

  105. Xiao B, Tu JC, Petralia RS et al (1998) Homer regulates the association of group 1 metabotropic glutamate receptors with multivalent complexes of Homer-related, synaptic proteins. Neuron 21:707–716

    Article  CAS  PubMed  Google Scholar 

  106. Sandonà D, Scolari A, Mikoshiba K et al (2003) Subcellular distribution of Homer 1b/c in relation to endoplasmic reticulum and plasma membrane proteins in Purkinje neurons. Neurochem Res 28:1151–1158

    Article  PubMed  Google Scholar 

  107. Shiraishi Y, Mizutani A, Yuasa S et al (2004) Differential expression of Homer family proteins in the developing mouse brain. J Comp Neurol 473:582–599

    Article  CAS  PubMed  Google Scholar 

  108. Mizutani A, Kuroda Y, Futatsugi A et al (2008) Phosphorylation of Homer3 by calcium/calmodulin-dependent kinase II regulates a coupling state of its target molecule in Purkinje cells. J Neurosci 28:5369–5382

    Article  CAS  PubMed  Google Scholar 

  109. Hudmon A, Schulman H (2002) Neuronal Ca2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu Rev Biochem 71:473–510

    Article  CAS  PubMed  Google Scholar 

  110. Yamauchi T (2005) Neuronal Ca2+/calmodulin-dependent protein kinase II—discovery, progress in a quarter of a century, and perspective: implication for learning and memory. Biol Pharm Bull 28:1342–1354

    Article  CAS  PubMed  Google Scholar 

  111. Wu G-Y, Cline HT (1998) Stabilization of dendritic arbor structure in vivo by CaMKII. Science 279:222–226

    Article  CAS  PubMed  Google Scholar 

  112. Vaillant AR, Zanassi P, Walsh GS et al (2002) Signaling mechanisms underlying activity-dependent dendrite formation. Neuron 34:985–998

    Article  CAS  PubMed  Google Scholar 

  113. Fink CC, Bayer K-U, Myers JW et al (2003) Selective regulation of neurite extension and synapse formation by the β but not the α isoform of CaMKII. Neuron 39:283–297

    Article  CAS  PubMed  Google Scholar 

  114. Gaudillière B, Konishi Y, de la Iglesia N et al (2004) A CaMKII-NeuroD signaling pathway specifies dendritic morphogenesis. Neuron 41:229–241

    Article  PubMed  Google Scholar 

  115. McGuinness TL, Lai Y, Greengard P (1985) Ca2+/calmodulin-dependent protein kinase II. Isozymic forms from rat forebrain and cerebellum. J Biol Chem 260:1696–1704

    CAS  PubMed  Google Scholar 

  116. Miller SG, Kennedy MB (1985) Distinct forebrain and cerebellar isozymes of type II Ca2+/calmodulin-dependent protein kinase associate differently with the postsynaptic density fraction. J Biol Chem 260:9039–9046

    CAS  PubMed  Google Scholar 

  117. Walaas SI, Lai Y, Gorelick FS et al (1988) Cell-specific localization of the α-subunit of calcium/calmodulin-dependent protein kinase II in Purkinje cells in rodent cerebellum. Brain Res Mol Brain Res 4:233–242

    Article  CAS  Google Scholar 

  118. Burgin KE, Waxham NN, Rickling S et al (1990) In situ hybridization histochemistry of Ca2+/calmodulin-dependent protein kinase in developing rat brain. J Neurosci 10:1788–1798

    CAS  PubMed  Google Scholar 

  119. Ichikawa T, Sekihara S, Ohsako S et al (1992) Ca2+/calmodulin-dependent protein kinase II in the rat cerebellum: an immunohistochemical study with monoclonal antibodies specific to either α or β subunit. J Chem Neuroanat 5:383–390

    Article  CAS  PubMed  Google Scholar 

  120. Ohkawa N, Fujitani K, Tokunaga E et al (2007) The microtubule destabilizer stathmin mediates the development of dendritic arbors in neuronal cells. J Cell Sci 120:1447–1456

    Article  CAS  PubMed  Google Scholar 

  121. Schrenk K, Kapfhammer JP, Metzger F (2002) Altered dendritic development of cerebellar Purkinje cells in slice cultures from protein kinase Cγ-deficient mice. Neuroscience 110:675–689

    Article  CAS  PubMed  Google Scholar 

  122. Sotelo C, Changeux JP (1974) Transsynaptic degeneration ‘en cascade’ in the cerebellar cortex of staggerer mutant mice. Brain Res 67:519–526

    Article  CAS  PubMed  Google Scholar 

  123. Herrup K (1983) Role of staggerer gene in determining cell number in cerebellar cortex. I. Granule cell death is an indirect consequence of staggerer gene action. Brain Res 313:267–274

    CAS  PubMed  Google Scholar 

  124. Bradley P, Berry M (1978) The Purkinje cell dendritic tree in mutant mouse cerebellum. A quantitative Golgi study of Weaver and Staggerer mice. Brain Res 142:135–141

    Article  CAS  PubMed  Google Scholar 

  125. Sotelo C (1978) Purkinje cell ontogeny: formation and maintenance of spines. Prog Brain Res 48:149–170

    Article  CAS  PubMed  Google Scholar 

  126. Sotelo C (1990) Cerebellar synaptogenesis: what we can learn from mutant mice. J Exp Biol 153:225–249

    CAS  PubMed  Google Scholar 

  127. Hamilton BA, Frankel WN, Kerrebrock AW et al (1996) Disruption of the nuclear hormone receptor RORα in staggerer mice. Nature 379:736–739

    Article  CAS  PubMed  Google Scholar 

  128. Cassimeris L (2002) The oncoprotein 18/stathmin family of microtubule destabilizers. Curr Opin Cell Biol 14:18–24

    Article  CAS  PubMed  Google Scholar 

  129. Grenningloh G, Soehrman S, Bondallaz P et al (2004) Role of the microtubule destabilizing proteins SCG10 and stathmin in neuronal growth. J Neurobiol 58:60–69

    Article  CAS  PubMed  Google Scholar 

  130. Ozon S, Byk T, Sobel A (1998) SCLIP: a novel SCG10-like protein of the stathmin family expressed in the nervous system. J Neurochem 70:2386–2396

    Article  CAS  PubMed  Google Scholar 

  131. Ozon S, Mestikawy EI, Sobel A (1999) Differential, regional, and cellular expression of the stathmin family transcripts in the adult rat brain. J Neurosci Res 56:553–564

    Article  CAS  PubMed  Google Scholar 

  132. Tanaka M, Sawada M, Yoshida S et al (1995) Insulin prevents apoptosis of external granular layer neurons in rat cerebellar slice cultures. Neurosci Lett 199:37–40

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Tanaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, M. Dendrite Formation of Cerebellar Purkinje Cells. Neurochem Res 34, 2078–2088 (2009). https://doi.org/10.1007/s11064-009-0073-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-009-0073-y

Keywords

Navigation