Skip to main content
Log in

Phase-resetting curve determines how BK currents affect neuronal firing

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

BK channels are large conductance potassium channels gated by calcium and voltage. Paradoxically, blocking these channels has been shown experimentally to increase or decrease the firing rate of neurons, depending on the neural subtype and brain region. The mechanism for how this current can alter the firing rates of different neurons remains poorly understood. Using phase-resetting curve (PRC) theory, we determine when BK channels increase or decrease the firing rates in neural models. The addition of BK currents always decreases the firing rate when the PRC has only a positive region. When the PRC has a negative region (type II), BK currents can increase the firing rate. The influence of BK channels on firing rate in the presence of other conductances, such as I m and I h , as well as with different amplitudes of depolarizing input, were also investigated. These results provide a formal explanation for the apparently contradictory effects of BK channel antagonists on firing rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams, P., & Brown, D. (1982). Synaptic inhibition of the M-current: Slow excitatory post-synaptic potential mechanism in bullfrog sympathetic neurones. The Journal of Physiology, 332, 263.

    PubMed  CAS  Google Scholar 

  • Aradi, I., & Holmes, W. (1999). Role of multiple calcium and calcium-dependent conductances in regulation of hippocampal dentate granule cell excitability. Journal of Computational Neuroscience, 6, 215–235.

    Article  PubMed  CAS  Google Scholar 

  • Borg-Graham, L. (1987). Master’s thesis: Modelling the somatic electrical behavior of hippocampal pyramidal neurons. PhD thesis, Massachusetts Institute of Technology.

  • Borg-Graham, L. (1998). The surf-hippo neuron simulation system. http://www.cnrs-gif.fr/iaf/iaf9/surf-hippo.html, v2.8.

  • Borg-Graham, L. (1999), Interpretations of data and mechanisms for hippocampal pyramidal cell models. In E. Jones, P. Ulinski, & A. Peters (Eds.), Cerebral cortex (Vol. 13, pp. 19–138). Plenum Publishing Corporation.

  • Borg-Graham, L., & Schramm, A. (2009). In vivo dynamic clamp: The functional impact of synaptic and intrinsic conductances in visual cortex. In A. Destexhe, & T. Bal (Eds.), In dynamic clamp: From principles to applications (Vol. 13, pp. 19–138). Springer.

  • Brenner, R., Chen, Q., Vilaythong, A., Toney, G., Noebels, J., & Aldrich, R. (2005). BK channel β4 subunit reduces dentate gyrus excitability and protects against temporal lobe seizures. Nature Neuroscience, 8, 1752–1759.

    Article  PubMed  CAS  Google Scholar 

  • De Schutter, E., & Bower, J. (1994). An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. Journal of Neurophysiology, 71, 375–400.

    PubMed  Google Scholar 

  • Destexhe, A., & Pare, D. (1999). Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. Journal of Neurophysiology, 81, 1531–1547.

    PubMed  CAS  Google Scholar 

  • Du, W., Bautista, J., Yang, H., Diez-Sampedro, A., You, S., Wang, L., et al. (2005). Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nature Genetics, 37, 733–738.

    Article  PubMed  CAS  Google Scholar 

  • Ermentrout, G. B. (1996). Type I membranes, phase-resetting curves, and synchrony. Neural Computation, 8, 979–1001.

    Article  PubMed  CAS  Google Scholar 

  • Ermentrout, G. B. (2002). Simulating, analyzing, and animating dynamical systems: A guide to XPPAUT for researchers and students. Society for Industrial and Applied Mathematics (SIAM).

  • Ermentrout, G. B., Pascal, M., & Gutkin, B. (2001). The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators. Neural Computation, 13, 1285–1310.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, J., Deister, C., & Wilson, C. (2007). Response properties and synchronization of rhythmically firing dendritic neurons. Journal of Neurophysiology, 97, 208.

    Article  PubMed  Google Scholar 

  • Gu, N., Vervaeke, K., & Storm, J. (2007). BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells. The Journal of Physiology, 580, 859.

    Article  PubMed  CAS  Google Scholar 

  • Jin, W., Sugaya, A., Tsuda, T., Ohguchi, H., & Sugaya, E. (2000). Relationship between large conductance calcium-activated potassium channel and bursting activity. Brain Research, 860, 21–28.

    Article  PubMed  CAS  Google Scholar 

  • Kuramoto, Y. (1984). Chemical oscillations, waves and turbulence. New York: Springer.

    Google Scholar 

  • Lee, U., & Cui, J. (2009). β subunit-specific modulations of BK channel function by a mutation associated with epilepsy and dyskinesia. The Journal of Physiology, 587, 1481–1498.

    Article  PubMed  CAS  Google Scholar 

  • Luthi, A., Bal, T., & McCormick, D. (1998). Periodicity of thalamic spindle waves is abolished by ZD7288, a blocker of Ih. Journal of Neurophysiology, 79, 3284–3289.

    PubMed  CAS  Google Scholar 

  • Maccaferri, G., & McBain, C. (1996). The hyperpolarization-activated current (Ih) and its contribution to pacemaker activity in rat CA1 hippocampal stratum oriens-alveus interneurones. Journal of Physiology, 497, 119–130.

    PubMed  CAS  Google Scholar 

  • Matthews, E., Weible, A., Shah, S., & Disterhoft, J. (2008). The BK-mediated fAHP is modulated by learning a hippocampus-dependent task. Proceedings of the National Academy of Sciences of the United States of America, 105, 15,154.

    Article  CAS  Google Scholar 

  • Meredith, A., Wiler, S., Miller, B., Takahashi, J., Fodor, A., Ruby, N., et al. (2006). BK calcium-activated potassium channels regulate circadian behavioral rhythms and pacemaker output. Nature Neuroscience, 9, 1041–1049.

    Article  PubMed  CAS  Google Scholar 

  • Moczydlowski, E., & Latorre, R. (1983). Gating kinetics of Ca2 +-activated K+ channels from rat muscle incorporated into planar lipid bilayers. Evidence for two voltage-dependent Ca2 + binding reactions. Journal of General Physiology, 82, 511–542.

    Article  PubMed  CAS  Google Scholar 

  • Narayanan, R., & Johnston, D. (2008) The h channel mediates location dependence and plasticity of intrinsic phase response in rat hippocampal neurons. Journal of Neuroscience, 28, 5846–5860.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, A., Gittis, A., & du Lac, S. (2005). Decreases in CaMKII activity trigger persistent potentiation of intrinsic excitability in spontaneously firing vestibular nucleus neurons. Neuron, 46, 623–631.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, A., Krispel, C., Sekirnjak, C., & du Lac, S. (2003). Long-lasting increases in intrinsic excitability triggered by inhibition. Neuron, 40, 609–620.

    Article  PubMed  CAS  Google Scholar 

  • Netoff, T., Acker, C., Bettencourt, J., & White, J. (2005a). Beyond two-cell networks: Experimental measurement of neuronal responses to multiple synaptic inputs. Journal of Computational Neuroscience, 18, 287–295.

    Article  PubMed  Google Scholar 

  • Netoff, T., Banks, M., Dorval, A., Acker, C., Haas, J., Kopell, N., et al. (2005b). Synchronization in hybrid neuronal networks of the hippocampal formation. Journal of Neurophysiology, 93, 1197–1208.

    Article  PubMed  Google Scholar 

  • Pfeuty, B., Mato, G., Golomb, D., & Hansel, D. (2003). Electrical synapses and synchrony: The role of intrinsic currents. Journal of Neuroscience, 23, 6280.

    PubMed  CAS  Google Scholar 

  • Pitts, G., Ohta, H., & McMahon, D. (2006). Daily rhythmicity of large-conductance Ca2 +-activated K+ currents in suprachiasmatic nucleus neurons. Brain Research, 1071(1), 54–62.

    Article  PubMed  CAS  Google Scholar 

  • Rinzel, J., & Ermentrout, G. B. (1989). Analysis of neural excitability and oscillations. In I. Segev (Ed.), Methods in neuronal modeling: From synapses to networks (pp. 135–169). MIT Press.

  • Shao, L., Halvorsrud, R., Borg-Graham, L., & Storm, J. (1999). The role of BK-type Ca2 +-dependent K+ channels in spike broadening during repetitive firing in rat hippocampal pyramidal cells. The Journal of Physiology, 521, 135–146.

    Article  PubMed  CAS  Google Scholar 

  • Sheehan, J., Benedetti, B., & Barth, A. (2009). Anticonvulsant effects of the BK-channel antagonist paxilline. Epilepsia, 50, 711–720.

    Article  PubMed  CAS  Google Scholar 

  • Shruti, S., Clem, R., & Barth, A. (2008). A seizure-induced gain-of-function in BK channels is associated with elevated firing activity in neocortical pyramidal neurons. Neurobiology of Disease, 30, 323–330.

    Article  PubMed  CAS  Google Scholar 

  • Stiefel, K., Gutkin, B., & Sejnowski, T. (2008). Cholinergic neuromodulation changes phase response curve shape and type in cortical pyramidal neurons. PLoS One 3.

  • Stiefel, K., Gutkin, B., & Sejnowski, T. (2009). The effects of cholinergic neuromodulation on neuronal phase-response curves of modeled cortical neurons. Journal of Computational Neuroscience, 26, 289–301.

    Article  PubMed  Google Scholar 

  • Storm, J. (1985). Calcium-dependent spike repolarization, and three kinds of after-hyperpolarization (AHP) in hippocampal pyramidal cells. Society for Neuroscience, 11, 1183.

    Google Scholar 

  • Storm, J. (1986a). A-current and ca-dependent transient outward current control the initial repetitive ring in hippocampal neurons. Biophysical Journal, 49, 369a.

    Google Scholar 

  • Storm, J. (1986b). Evidence that C-current and A-current contribute to repolarization of the action potential in CA1 hippocampal pyramidal cells of rat hippocampus. Society for Neuroscience, 12, 764.

    Google Scholar 

  • Storm, J. (1987). Action potential repolarization and a fast after-hyperpolarization in rat hippocampal pyramidal cells. The Journal of Physiology, 385, 733.

    PubMed  CAS  Google Scholar 

  • Sun, L., Xiong, Y., Zeng, X., Wu, Y., Pan, N., Lingle, C., et al. (2009). Differential regulation of action potentials by inactivating and noninactivating BK channels in rat adrenal chromaffin cells. Biophysical Journal, 97, 1832–1842.

    Article  PubMed  CAS  Google Scholar 

  • Traub, R., Wong, R., Miles, R., & Michelson, H. (1991). A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. Journal of Neurophysiology, 66, 635–650.

    PubMed  CAS  Google Scholar 

  • Tsubo, Y., Takada, M., Reyes, A., & Fukai, T. (2007). Layer and frequency dependencies of phase response properties of pyramidal neurons in rat motor cortex. European Journal of Neuroscience, 25, 3429.

    Article  PubMed  Google Scholar 

  • Wang, B., Rothberg, B., & Brenner, R. (2006). Mechanism of β4 subunit modulation of BK channels. Journal of General Physiology, 127, 449–465.

    Article  PubMed  CAS  Google Scholar 

  • Winfree, A. (1974). Patterns of phase compromise in biological cycles. Journal of Mathematical Biology, 1, 73–93.

    Article  Google Scholar 

Download references

Acknowledgements

CL is supported by an NSF Mathematical Sciences Postdoctoral Research Fellowship # DMS-0703502. ALB is supported by a Society for Neuroscience Research Innovation Award. GBE is supported by an NSF grant # DMS-0817131.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bard Ermentrout.

Additional information

Action Editor: Alain Destexhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ly, C., Melman, T., Barth, A.L. et al. Phase-resetting curve determines how BK currents affect neuronal firing. J Comput Neurosci 30, 211–223 (2011). https://doi.org/10.1007/s10827-010-0246-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-010-0246-3

Keywords

Navigation