Skip to main content
Log in

The Binding of Iron to Perineuronal Nets: A Combined Nuclear Microscopy and Mössbauer Study

  • Investigations in Biology, Chemistry, and Medicine
  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

A specialized form of extracellular matrix (ECM) surrounds subpopulations of neurons termed ‘perineuronal nets’ (PNs). These PNs form highly anionic charged structures in the direct microenvironment of neurons, assumed to be involved in local ion homeostasis since they are able to scavenge and bind redox-active iron ions. The quantity and distribution of iron-charged PNs of the extracellular matrix in the rat brain areas of the cortex and the red nucleus was investigated using the powerful combination of Particle-Induced X-ray Emission (PIXE) and Mössbauer spectroscopy. These studies reveal that the iron is bound to the PNs as Fe(III). PNs in both brain regions accumulate up to three to five times more Fe3+ than any other tissue structure in dependency on the applied Fe concentration with local amount maximums of 480 mmol/l Fe at PNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brückner G., Bringmann A., Härtig W., Köppe G., Delpech B. and Brauer K. Exp. Brain Res. 121 (1998), 300–310.

    Article  Google Scholar 

  2. Brückner G., Hausen D., Härtig W., Drlicek M., Arendt T. and Brauer K. Neuroscience 92 (1999), 791–805.

    Article  Google Scholar 

  3. Celio M. R. and Blümcke I. Brain Res. Brain Res. Rev. 19 (1994), 128–145.

    Article  Google Scholar 

  4. Connor J. R., Menzies S. L., Burdo J. R. and Boyer P. J. Pediatr. Neurol. 25 (2001), 118–129.

    Article  Google Scholar 

  5. Halliwell B. Drugs Aging 18 (2001), 685–716.

    Article  Google Scholar 

  6. Kakhlon O. and Cabantchik Z. I. Free Radic. Biol. Med. 33 (2002), 1037–1046.

    Article  Google Scholar 

  7. Lovell M. A., Robertson J. D., Teesdale W. J., Campbell J. L. and Markesbery W. R. J. Neurol. Sci. 158 (1998), 47–52.

    Article  Google Scholar 

  8. Morawski M., Brückner M. K., Riederer P., Brückner G. and Arendt T. Exp. Neurol. 188 (2004), 309–315.

    Article  Google Scholar 

  9. Reinert T., Morawski M., Arendt T. and Butz T. Nucl. Instr. Meth. B 210 (2003), 395–400.

    Article  ADS  Google Scholar 

  10. Ryan C. G. Nucl. Instr. Meth. B 181 (2001), 170–179.

    Article  ADS  Google Scholar 

  11. Smith M. A., Nunomura A., Zhu X., Takeda A. and Perry G. Antioxid. Redox. Signal. 2 (2000), 413–420.

    Article  Google Scholar 

  12. Yamaguchi Y. Cell. Mol. Life Sci. 57 (2000), 276–289.

    Article  Google Scholar 

  13. Doolittle L. R. Nucl. Instr. Meth. B 9 (1985), 344.

    Article  ADS  Google Scholar 

  14. Vogt J., Flagmeyer R. H., Heitmann J., Lehmann D., Reinert T., Jankuhn S., Spemann D., Tröger W. and Butz T. MiKrochim. Acta 133 (2000), 105.

    Google Scholar 

  15. St. Pierre T. G., Dickson D. P. E., Webb J., Kim K. S., Macey D. J. and Mann S. Hyperfine Interact. 29 (1986), 1427.

    Article  ADS  Google Scholar 

  16. Bell S. H., Weir M. P., Dickson D. P. E., Gibson J. F., Sharp G. A. and Peters T. J. Biochimica et Biophysica Acta 787 (1984), 227.

    Google Scholar 

  17. Dickson D. P. E. Hyperfine Interact. 111 (1998), 171.

    Article  ADS  Google Scholar 

  18. Jambor J. L. and Dutrizac J. E. Chem. Rev. 98 (1998), 2549.

    Article  Google Scholar 

  19. Murad E., Bowen L. H., Long G. J. and Quin T. G. Clay Minerals 23 (1988), 161.

    Article  Google Scholar 

  20. Golgi C. Rendiconti della Reale Accademia dei Lincei (21 maggio) 2 (1893), 443–450.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Tröger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morawski, M., Reinert, T., Brückner, G. et al. The Binding of Iron to Perineuronal Nets: A Combined Nuclear Microscopy and Mössbauer Study. Hyperfine Interact 159, 285–291 (2004). https://doi.org/10.1007/s10751-005-9116-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-005-9116-1

Key Words

Navigation