Skip to main content
Log in

Cellular composition characterizing postnatal development and maturation of the mouse brain and spinal cord

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The process of development, maturation, and regression in the central nervous system (CNS) are genetically programmed and influenced by environment. Hitherto, most research efforts have focused on either the early development of the CNS or the late changes associated with aging, whereas an important period corresponding to adolescence has been overlooked. In this study, we searched for age-dependent changes in the number of cells that compose the CNS (divided into isocortex, hippocampus, olfactory bulb, cerebellum, ‘rest of the brain’, and spinal cord) and the pituitary gland in 4–40-week-old C57BL6 mice, using the isotropic fractionator method in combination with neuronal nuclear protein as a marker for neuronal cells. We found that all CNS structures, except for the isocortex, increased in mass in the period of 4–15 weeks. Over the same period, the absolute number of neurons significantly increased in the olfactory bulb and cerebellum while non-neuronal cell numbers increased in the ‘rest of the brain’ and isocortex. Along with the gain in body length and weight, the pituitary gland also increased in mass and cell number, the latter correlating well with changes of the brain and spinal cord mass. The majority of the age-dependent alterations (e.g., somatic parameters, relative brain mass, number of pituitary cells, and cellular composition of the cerebellum, isocortex, rest of the brain, and spinal cord) occur rapidly between the 4th and 11th postnatal weeks. This period includes murine adolescence, underscoring the significance of this stage in the postnatal development of the mouse CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CNS:

Central nervous system

DAPI:

4′,6-Diamidino-2-phenylindole

DG:

Dentate gyrus

NeuN:

Neuronal nuclear protein

PBS:

Phosphate buffered saline

W4:

4-Week-old mice

W15:

15-Week-old mice

W40:

40-Week-old mice

References

  • Altman J (1969a) Autoradiographic and histological studies of postnatal neurogenesis. 3. Dating the time of production and onset of differentiation of cerebellar microneurons in rats. J Comp Neurol 136:269–293

    Article  PubMed  CAS  Google Scholar 

  • Altman J (1969b) Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137:433–457

    Article  PubMed  CAS  Google Scholar 

  • Bandeira F, Lent R, Herculano-Houzel S (2009) Changing numbers of neuronal and non-neuronal cells underlie postnatal brain growth in the rat. Proc Natl Acad Sci USA 106:14108–14113

    Article  PubMed  CAS  Google Scholar 

  • Bayer SA (1980a) Development of the hippocampal region in the rat. I. Neurogenesis examined with 3H-thymidine autoradiography. J Comp Neurol 190:87–114

    Article  PubMed  CAS  Google Scholar 

  • Bayer SA (1980b) Development of the hippocampal region in the rat. II. Morphogenesis during embryonic and early postnatal life. J Comp Neurol 190:115–134

    Article  PubMed  CAS  Google Scholar 

  • Bayer SA (1983) 3H-thymidine-radiographic studies of neurogenesis in the rat olfactory bulb. Exp Brain Res 50:329–340

    PubMed  CAS  Google Scholar 

  • Bayer SA (1989) Cellular aspects of brain development. Neurotoxicology 10:307–320

    PubMed  CAS  Google Scholar 

  • Bonthius DJ, McKim R, Koele L, Harb H, Karacay B, Mahoney J, Pantazis NJ (2004) Use of frozen sections to determine neuronal number in the murine hippocampus and neocortex using the optical disector and optical fractionator. Brain Res Brain Res Protoc 14:45–57

    Article  PubMed  Google Scholar 

  • Breton-Provencher V, Saghatelyan A (2012) Newborn neurons in the adult olfactory bulb: unique properties for specific odor behavior. Behav Brain Res 227:480–489

    Article  PubMed  Google Scholar 

  • Coulin C, Drakew A, Frotscher M, Deller T (2001) Stereological estimates of total neuron numbers in the hippocampus of adult reeler mutant mice: evidence for an increased survival of Cajal–Retzius cells. J Comp Neurol 439:19–31

    Article  PubMed  CAS  Google Scholar 

  • Cushman JD, Maldonado J, Kwon EE, Garcia AD, Fan G, Imura T, Sofroniew MV, Fanselow MS (2012) Juvenile neurogenesis makes essential contributions to adult brain structure and plays a sex-dependent role in fear memories. Front Behav Neurosci 6:3

    Article  PubMed  Google Scholar 

  • Drage MG, Holmes GL, Seyfried TN (2002) Hippocampal neurons and glia in epileptic EL mice. J Neurocytol 31:681–692

    Article  PubMed  Google Scholar 

  • Drickamer LC (1981) Selection for age of sexual maturation in mice and the consequences for population regulation. Behav Neural Biol 31:82–89

    Article  PubMed  CAS  Google Scholar 

  • Flood DG, Coleman PD (1988) Neuron numbers and sizes in aging brain: comparisons of human, monkey, and rodent data. Neurobiol Aging 9:453–463

    Article  PubMed  CAS  Google Scholar 

  • Fox JG, Barthold S, Davisson M, Newcomer CE, Quimby FW, Smith A (2006) The mouse in biomedical research. Academic Press, Burlington

    Google Scholar 

  • Haddara M (1956) A quantitative study of the postnatal changes in the packing density of the neurons in the visual cortex of the mouse. J Anat 90:494–501

    PubMed  CAS  Google Scholar 

  • Herculano-Houzel S, Lent R (2005) Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J Neurosci 25:2518–2521

    Article  PubMed  CAS  Google Scholar 

  • Hong SM, Liu Z, Fan Y, Neumann M, Won SJ, Lac D, Lum X, Weinstein PR, Liu J (2007) Reduced hippocampal neurogenesis and skill reaching performance in adult Emx1 mutant mice. Exp Neurol 206:24–32

    Article  PubMed  Google Scholar 

  • Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T, Yamaguchi M, Mori K, Ikeda T, Itohara S, Kageyama R (2008) Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci 11:1153–1161

    Article  PubMed  CAS  Google Scholar 

  • Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386:493–495

    Article  PubMed  CAS  Google Scholar 

  • Kim WR, Sun W (2011) Programmed cell death during postnatal development of the rodent nervous system. Dev Growth Differ 53:225–235

    Article  PubMed  Google Scholar 

  • Klein C, Butt SJB, Machold RP, Johnson JE, Fishell G (2005) Cerebellum- and forebrain-derived stem cells possess intrinsic regional character. Development 132:4497–4508

    Article  PubMed  CAS  Google Scholar 

  • Koek W, France CP, Javors MA (2012) Morphine-induced motor stimulation, motor incoordination, and hypothermia in adolescent and adult mice. Psychopharmacology 219:1027–1037

    Article  PubMed  CAS  Google Scholar 

  • Lemasson M, Saghatelyan A, Olivo-Marin J-C, Lledo P-M (2005) Neonatal and adult neurogenesis provide two distinct populations of newborn neurons to the mouse olfactory bulb. J Neurosci 25:6816–6825

    Article  PubMed  CAS  Google Scholar 

  • Long JM, Kalehua AN, Muth NJ, Calhoun ME, Jucker M, Hengemihle JM, Ingram DK, Mouton PR (1998) Stereological analysis of astrocyte and microglia in aging mouse hippocampus. Neurobiol Aging 19:497–503

    Article  PubMed  CAS  Google Scholar 

  • Lyck L, Kroigard T, Finsen B (2007) Unbiased cell quantification reveals a continued increase in the number of neocortical neurones during early post-natal development in mice. Eur J Neurosci 26:1749–1764

    Article  PubMed  Google Scholar 

  • Matoba R, Saito S, Ueno N, Maruyama C, Matsubara K, Kato K (2000) Gene expression profiling of mouse postnatal cerebellar development. Physiol Genomics 4:155–164

    PubMed  CAS  Google Scholar 

  • Mejia-Gervacio S, Murray K, Sapir T, Belvindrah R, Reiner O, Lledo PM (2012) MARK2/Par-1 guides the directionality of neuroblasts migrating to the olfactory bulb. Mol Cell Neurosci 49:97–103

    Article  PubMed  CAS  Google Scholar 

  • Mouton PR, Long JM, Lei DL, Howard V, Jucker M, Calhoun ME, Ingram DK (2002) Age and gender effects on microglia and astrocyte numbers in brains of mice. Brain Res 956:30–35

    Article  PubMed  CAS  Google Scholar 

  • Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development 116:201–211

    PubMed  CAS  Google Scholar 

  • Paxinos G, Halliday G, Watson C, Koutcherov Y, Wang HQ (2007) Atlas of the developing mouse brain at E17.5, P0, and P6. Elsevier Academic Press, San Diego

    Google Scholar 

  • Pignatelli A, Belluzzi O (2010) Neurogenesis in the adult olfactory bulb. In: Menini A (ed) The neurobiology of olfaction. CRC Press, Boca Raton

  • Ponti G, Crociara P, Armentano M, Bonfanti L (2010) Adult neurogenesis without germinal layers: the “atypical” cerebellum of rabbits. Arch Ital Biol 148:147–158

    PubMed  CAS  Google Scholar 

  • Quoilin C, Didone V, Tirelli E, Quertemont E (2012) Developmental differences in ethanol-induced sensitization using postweanling, adolescent, and adult Swiss mice. Psychopharmacology 2012:1165–1177

    Article  Google Scholar 

  • Royet JP, Distel H, Hudson R, Gervais R (1998) A re-estimation of the number of glomeruli and mitral cells in the olfactory bulb of rabbit. Brain Res 788:35–42

    Article  PubMed  CAS  Google Scholar 

  • Sisk CL, Foster DL (2004) The neural basis of puberty and adolescence. Nat Neurosci 7:1040–1047

    Article  PubMed  CAS  Google Scholar 

  • Sottile V, Li M, Scotting PJ (2006) Stem cell marker expression in the Bergmann glia population of the adult mouse brain. Brain Res 1099:8–17

    Article  PubMed  CAS  Google Scholar 

  • Stranahan AM, Jiam NT, Spiegel AM, Gallagher M (2012) Aging reduces total neuron number in the dorsal component of the rodent prefrontal cortex. J Comp Neurol 520:1318–1326

    Article  PubMed  Google Scholar 

  • Vandenbergh JG (1987) Regulation of puberty and its consequences on population dynamics of mice. Am Zool 27:891–898

    Google Scholar 

  • Watson C, Paxinos G, Puelles L (2012) The mouse nervous system. Elsevier Academic Press, San Diego

    Google Scholar 

  • Wingert F (1969) Biometrische Analyse der Wachstumsfunktionen von Hirnteilen und Körpergewicht der Albinomaus. J Hirnforschung 11:133–197

    CAS  Google Scholar 

  • Witgen BM, Lifshitz J, Grady MS (2006) Inbred mouse strains as a tool to analyze hippocampal neuronal loss after brain injury: a stereological study. J Neurotrauma 23:1320–1329

    Article  PubMed  Google Scholar 

  • Wittmann W, McLennan IS (2011) The male bias in the number of Purkinje cells and the size of the murine cerebellum may require Mullerian inhibiting substance/anti-Mullerian hormone. J Neuroendocrinol 23:831–838

    Article  PubMed  CAS  Google Scholar 

  • Wolf HK, Buslei R, Schmidt-Kastner R, Schmidt-Kastner PK, Pietsch T et al (1996) NeuN: a useful neuronal marker for diagnostic histopathology. J Histochem Cytochem 44:1167–1171

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by an NHMRC (National Health and Medical Research Council) Australia Fellowship Grant awarded to George Paxinos (Grant #568605), the Australian Research Council Thinking Systems Initiative (TS0669860), by grants from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil), FAPERJ (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro), INCT/MCT (Instituto Nacional de Ciência e Tecnologia/Ministério de Ciência e Tecnologia), and the James S. McDonnell Foundation to Dr. Suzana Herculano-Houzel.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Watson.

Additional information

Y. Fu and Z. Rusznák have made an equal contribution to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, Y., Rusznák, Z., Herculano-Houzel, S. et al. Cellular composition characterizing postnatal development and maturation of the mouse brain and spinal cord. Brain Struct Funct 218, 1337–1354 (2013). https://doi.org/10.1007/s00429-012-0462-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-012-0462-x

Keywords

Navigation