Skip to main content
Log in

Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The medial prefrontal cortex (mPFC) has been associated with diverse functions including attentional processes, visceromotor activity, decision making, goal directed behavior, and working memory. Using retrograde tracing techniques, we examined, compared, and contrasted afferent projections to the four divisions of the mPFC in the rat: the medial (frontal) agranular (AGm), anterior cingulate (AC), prelimbic (PL), and infralimbic (IL) cortices. Each division of the mPFC receives a unique set of afferent projections. There is a shift dorsoventrally along the mPFC from predominantly sensorimotor input to the dorsal mPFC (AGm and dorsal AC) to primarily ‘limbic’ input to the ventral mPFC (PL and IL). The AGm and dorsal AC receive afferent projections from widespread areas of the cortex (and associated thalamic nuclei) representing all sensory modalities. This information is presumably integrated at, and utilized by, the dorsal mPFC in goal directed actions. In contrast with the dorsal mPFC, the ventral mPFC receives significantly less cortical input overall and afferents from limbic as opposed to sensorimotor regions of cortex. The main sources of afferent projections to PL/IL are from the orbitomedial prefrontal, agranular insular, perirhinal and entorhinal cortices, the hippocampus, the claustrum, the medial basal forebrain, the basal nuclei of amygdala, the midline thalamus and monoaminergic nuclei of the brainstem. With a few exceptions, there are few projections from the hypothalamus to the dorsal or ventral mPFC. Accordingly, subcortical limbic information mainly reaches the mPFC via the midline thalamus and basal nuclei of amygdala. As discussed herein, based on patterns of afferent (as well as efferent) projections, PL is positioned to serve a direct role in cognitive functions homologous to dorsolateral PFC of primates, whereas IL appears to represent a visceromotor center homologous to the orbitomedial PFC of primates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

AA:

Anterior area of amygdala

AC:

Anterior cingulate cortex

ACC:

Nucleus accumbens

AD:

Anterodorsal nucleus of thalamus

AGm:

Medial agranular (frontal) cortex

AGl:

Lateral agranular (frontal) cortex

AH:

Anterior nucleus of hypothalamus

AI,d,p,v:

Agranular insular cortex, dorsal, posterior, ventral divisions

AM,d:

Anteromedial nucleus of thalamus, dorsal division

AON, m,v:

Anterior olfactory nucleus, medial, ventral parts

AQ:

Cerebral aqueduct

APN:

Anterior pretectal nucleus

AUD:

Auditory cortex

AV:

Anteroventral nucleus of thalamus

BF:

Basal forebrain

BLA:

Basolateral nucleus of amygdala

BMA,p:

Basomedial nucleus of amygdala, posterior part

BST:

Bed nucleus of stria terminalis

CA1,3:

Field CA1 and CA3 of Ammon’s horn

CB:

Cinguum bundle

CC:

Corpus callosum

CEA:

Central nucleus of amygdala

CL:

Central lateral nucleus of the thalamus

CLA:

Claustrum

CLi:

Central linear nucleus

CM:

Central medial nucleus of thalamus

COA:

Cortical nucleus of amygdala

CP:

Caudate-putamen

CUN:

Cuneiform nucleus

DBh:

Nucleus of diagonal band, horizontal limb

DG:

Dentate gyrus of hippocampus

DI:

Dysgranular insular cortex

DR:

Dorsal raphe nucleus

EC,l,m:

Entorhinal cortex, lateral, medial divisions

ECT:

Ectorhinal cortex

EN:

Endopiriform nucleus

FP,l,m:

Frontal polar cortex, lateral, medial divisions

FR:

Fasciculus retroflexus

FS:

Fundus of the striatum

GI:

Granular insular cortex

GP:

Globus pallidus

HF:

Hippocampal formation

IAM:

Interanteromedial nucleus of thalamus

IC:

Inferior colliculus

IF:

Interfascicular nucleus

IL:

Infralimbic cortex

IMD:

Intermediodorsal necleus of thalamus

INC:

Insular cortex

IP:

Interpeduncular nucleus

LA:

Lateral nucleus of amygdala

LC:

Locus coeruleus

LD:

Lateral dorsal nucleus of thalamus

LDT:

Laterodorsal tegmental nucleus

LG,d:

Lateral geniculate nucleus, dorsal division

LH:

Lateral habenula

LHy:

Lateral hypothalamus

LM:

Lateral mammillary nucleus

LO:

Lateral orbital cortex

LP:

Lateral posterior nucleus of thalamus

LPO:

Lateral preoptic area

LS:

Lateral septum

LV:

Lateral ventricle

MA:

Magnocellular preoptic nucleus

MB:

Mammillary bodies

MD:

Mediodorsal nucleus of thalamus

MEA:

Medial nucleus of the amygdala

MFB:

Medial forebrain bundle

MG,v:

Medial geniculate nucleus, ventral division

MH:

Medial habenula

MO:

Medial orbital cortex

mPFC:

Medial prefrontal cortex

MPO:

Medial preoptic area

MR:

Median raphe nucleus

MRF:

Mesencephalic reticular formation

MS:

Medial septum

MT:

Mammillothalamic tract

NI:

Nucleus incertus

NLL:

Nucleus of lateral lemniscus

NP:

Nucleus of pons

OC,1,2:

Occipital cortex, primary and secondary divisions

OT:

Olfactory tubercle

PA:

Posterior nucleus of amygdala

PAG:

Periaqueductal gray

PAp:

Posterior parietal cortex

PARA:

Parasubiculum of HF

PB, l, m:

Parabrachial nucleus, lateral, medial divisions

PC:

Paracentral nucleus of thalamus

PF:

Parafascicular nucleus

PH:

Posterior nucleus of hypothalamus

PIR:

Piriform cortex

PL:

Prelimbic cortex

PN5:

Principal sensory nucleus of trigeminal nerve

PO:

Posterior nucleus of thalamus

POST:

Postsubiculum of HF

PPT:

Pedunculopontine tegmental nucleus

PRC:

Perirhinal cortex

PRE:

Presubiculum of HF

PT:

Paratenial nucleus of thalamus

PV:

Paraventricular nucleus of thalamus

RAM:

Radial arm maze

RE:

Nucleus reuniens of thalamus

RF:

Rhinal fissue

RH:

Rhomboid nucleus of thalamus

RLi:

Rostral linear nucleus

RM:

Raphe magnus

RN:

Red nucleus

RPC:

Nucleus pontis caudalis

RPO:

Nucleus pontis oralis

RSC:

Retrosplenial cortex

RR:

Retrorubral area

RT:

Reticular nucleus of thalamus

SC:

Superior colliculus

SF:

Septofimbrial nucleus

SI:

Substantia innominata

sm:

Stria medullaris

SM:

Submedial nucleus of thalamus

SN,c,r:

Substantia nigra, pars compacta, pars reticulata

SSI:

Primary somatosensory cortex

SSII:

Secondary somatosensory cortex

SUB,d,v:

Subiculum, dorsal, ventral parts

SUM:

Supramammillary nucleus

TE:

Temporal cortex

TR:

Amygdalo-piriform transition zone

TT,d,v:

Taenia tecta, dorsal, ventral parts

V3:

Third ventricle

V4:

Forth ventricle

VAL:

Ventral anterior-lateral complex of thalamus

VB:

Ventrobasal complex of thalamus

VLO:

Ventrolateral orbital cortex

VM:

Ventral medial nucleus of thalamus

VO:

Ventral orbital cortex

VTA:

Ventral tegmental area

ZI:

Zona incerta

References

  • Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 85:119–146

    PubMed  CAS  Google Scholar 

  • Allen GV, Saper CB, Hurley KM, Cechetto DF (1991) Organization of visceral and limbic connections in the insular cortex of the rat. J Comp Neurol 311:1–16

    PubMed  CAS  Google Scholar 

  • Anderson SW, Barrash J, Bechara A, Tranel D (2006) Impairments of emotion and real-world complex behavior following childhood- or adult-onset damage to ventromedial prefrontal cortex. J Int Neuropsychol Soc 12:224–235

    PubMed  Google Scholar 

  • Bacon SJ, Headlam AJN, Gabbott PLA, Smith AD (1996) Amygdala input to medial prefrontal cortex (mPFC) in the rat: a light and electron microscope study. Brain Res 720:211–219

    PubMed  CAS  Google Scholar 

  • Balleine BW, Killcross AS, Dickinson A (2003) The effect of lesions of the basolateral amygdala on instrumental conditioning. J Neurosci 23:666–675

    PubMed  CAS  Google Scholar 

  • Barbas H (1995) Anatomical basis of cognitive-emotional interactions in the primate prefrontal cortex. Neurosci Biobehav Rev 19:499–510

    PubMed  CAS  Google Scholar 

  • Barbas H (2000) Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices. Brain Res Bull 52:319–330

    PubMed  CAS  Google Scholar 

  • Barrash J, Tranel D, Anderson SW (2000) Acquired personality disturbances associated with bilateral damage to the ventromedial prefrontal region. Dev Neuropsychol 18:355–381

    PubMed  CAS  Google Scholar 

  • Barros DM, Pereira P, Medina JH, Izquierdo I (2002) Modulation of working memory and of long- but not short-term memory by cholinergic mechanisms in the basolateral amygdala. Behav Pharmacol 13:163–167

    PubMed  CAS  Google Scholar 

  • Beckstead RM (1979) Autoradiographic examination of corticocortical and subcortical projections of the mediodorsal-projection (prefrontal) cortex in the rat. J Comp Neurol 184:43–62

    PubMed  CAS  Google Scholar 

  • Berendse HW, Groenewegen HJ (1991) Restricted cortical termination fields of the midline and intralaminar thalamic nuclei in the rat. Neuroscience 42:73–102

    PubMed  CAS  Google Scholar 

  • Berlin HA, Rolls ET, Kischka U (2004) Impulsivity, time perception, emotion and reinforcement sensitivity in patients with orbitofrontal cortex lesions. Brain 127:1108–1126

    PubMed  CAS  Google Scholar 

  • Berridge CW, Waterhouse BD (2003) The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev 42:33–84

    PubMed  Google Scholar 

  • Bigl V, Woolf NJ, Butcher LL (1982) Cholinergic projections from the basal forebrain to frontal, parietal, temporal, occipital, and cingulate cortices: a combined fluorescent tracer and acetylcholinesterase analysis. Brain Res Bull 8:727–749

    PubMed  CAS  Google Scholar 

  • Bokor H, Csaki A, Kocsis K, Kiss J (2002) Cellular architecture of the nucleus reuniens thalami and its putative aspartatergic/glutamatergic projection to the hippocampus and medial septum in the rat. Eur J Neurosci 16:1227–1239

    PubMed  Google Scholar 

  • Brashear HR, Zaborszky L, Heimer L (1986) Distribution of GABAergic and cholinergic neurons in the rat diagonal band. Neuroscience 17:439–451

    PubMed  CAS  Google Scholar 

  • Brito GNO, Brito LSO (1990) Septohippocampal system and the prelimbic sector of frontal cortex: a neuropsychological battery analysis in the rat. Behav Brain Res 36:127–146

    PubMed  CAS  Google Scholar 

  • Buchanan SL, Thompson RH, Maxwell BL, Powell DL (1994) Efferent connections of the prefrontal cortex in the rabbit. Exp Brain Res 100:469–483

    PubMed  CAS  Google Scholar 

  • Burns SM, Wyss JM (1985) The involvement of the anterior cingulate cortex in blood pressure control. Brain Res 370:71–77

    Google Scholar 

  • Cain DP, Boon F, Corcoran ME (2006) Thalamic and hippocampal mechanisms in spatial navigation: a dissociation between brain mechanisms for learning how versus learning where to navigate. Behav Brain Res 170:241–256

    PubMed  Google Scholar 

  • Cameron AA, Khan IA, Westlund KN, Cliffer KD, Willis WD (1995) The efferent projections of the periaqueductal gray in the rat: a Phaseolus vulgaris-leucoagglutinin study. I. Ascending projections. J Comp Neurol 351:568–584

    PubMed  CAS  Google Scholar 

  • Cape EG, Manns ID, Alonso A, Beaudet A, Jones BE (2000) Neurotensin-induced bursting of cholinergic basal forebrain neurons promotes gamma and theta cortical activity together with waking and paradoxical sleep. J Neurosci 20:8452–8461

    PubMed  CAS  Google Scholar 

  • Carr DB, Sesack SR (1996) Hippocampal afferents to the rat prefrontal cortex: synaptic targets and relation to dopamine terminals. J Comp Neurol 369:1–15

    PubMed  CAS  Google Scholar 

  • Carr DB, Sesack SR (2000a) GABA-containing neurons in the rat ventral tegmental area project to the prefrontal cortex. Synapse 38:114–123

    PubMed  CAS  Google Scholar 

  • Carr DB, Sesack SR (2000b) Dopamine terminals synapse on callosal projection neurons in the rat prefrontal cortex. J Comp Neurol 425:275–283

    PubMed  CAS  Google Scholar 

  • Chandler HC, King V, Corwin JV, Reep RL (1992) Thalamocortical connections of rat posterior parietal cortex. Neurosci Lett 143:237–242

    PubMed  CAS  Google Scholar 

  • Cheatwood JL, Reep RL, Corwin JV (2003) The associative striatum: cortical and thalamic projections to the dorsocentral striatum in rats. Brain Res 968:1–14

    PubMed  CAS  Google Scholar 

  • Cheatwood JL, Corwin JV, Reep RL (2005) Overlap and interdigitation of cortical and thalamic afferents to dorsocentral striatum in the rat. Brain Res 1036:90–100

    PubMed  CAS  Google Scholar 

  • Chen S, Su HS (1990) Afferent connections of the thalamic paraventricular and parataenial nuclei in the rat—a retrograde tracing study with iontophoretic application of Fluoro-Gold. Brain Res 522:1–6

    PubMed  CAS  Google Scholar 

  • Chiba T, Kayahara T, Nakanoh K (2001) Efferent projections of infralimbic and prelimbic areas of the medial prefrontal cortex in the Japanese monkey, Macaca fuscata. Brain Res 888:83–101

    PubMed  CAS  Google Scholar 

  • Conde F, Audinat E, Maire-Lepoivre E, Crepel F (1990) Afferent connections of the medial frontal cortex of the rat. A study using retrograde transport of fluorescent dyes. I. Thalamic afferents. Brain Res Bull 24:341–354

    PubMed  CAS  Google Scholar 

  • Conde F, Maire-Lepoivre E, Audinat E, Crepel F (1995) Afferent connections of the medial frontal cortex of the rat. II. Cortical and subcortical afferents. J Comp Neurol 352:567–593

    PubMed  CAS  Google Scholar 

  • Cooper BG, Mizumori SJ (2001) Temporary inactivation of the retrosplenial cortex causes a transient reorganization of spatial coding in the hippocampus. J Neurosci 21:3986–4001

    PubMed  CAS  Google Scholar 

  • Cornwall J, Phillipson OT (1988) Afferent projections to the dorsal thalamus of the rat as shown by retrograde lectin transport. II. The midline nuclei. Brain Res Bull 21:147–161

    PubMed  CAS  Google Scholar 

  • Cornwall J, Cooper JD, Phillipson OT (1990) Afferent and efferent connections of the laterodorsal tegmental nucleus of the rat. Brain Res Bull 25:271–284

    PubMed  CAS  Google Scholar 

  • Corwin JV, Reep RL (1998) Rodent posterior parietal cortex as a component of a cortical network mediating directed spatial attention. Psychobiology 26:87–102

    Google Scholar 

  • Corwin JV, Kanter S, Watson RT, Heilman KM, Valenstein E, Hashimoto A (1986) Apomorphine has a therapeutic effect on neglect produced by unilateral dorsomedial prefrontal cortex lesions in rats. Exp Neurol 94:683–698

    PubMed  CAS  Google Scholar 

  • Crowne DP, Pathria MN (1982) Some attentional effects of unilateral frontal lesions in the rat. Behav Brain Res 6:25–39

    PubMed  CAS  Google Scholar 

  • Crowne DP, Richardson CM, Dawson KA (1986) Parietal and frontal eye field neglect in the rat. Behav Brain Res 22:227–231

    PubMed  CAS  Google Scholar 

  • Damasio AR, Tranel D, Damasio H (1990) Individuals with sociopathic behavior caused by frontal damage fail to respond autonomically to social stimuli. Behav Brain Res 41:81–94

    PubMed  CAS  Google Scholar 

  • Delatour B, Gisquet-Verrier P (1996) Prelimbic cortex specific lesions disrupt delayed-variable response tasks in the rat. Behav Neurosci 110:1282–1298

    PubMed  CAS  Google Scholar 

  • Delatour B, Gasket-Verrier P (1999) Lesions of the prelimbic-infralimbic cortices in rats do not disrupt response selection processes but induce delay-dependent deficits: evidence for a role in working memory? Behav Neurosci 113:941–955

    PubMed  CAS  Google Scholar 

  • Delatour B, Gisquet-Verrier P (2000) Functional role of rat prelimbic-infralimbic cortices in spatial memory: evidence for their involvement in attention and behavioral flexibility. Behav Brain Res 109:113–128

    PubMed  CAS  Google Scholar 

  • Delatour B, Witter MP (2002) Projections from the parahippocampal region to the prefrontal cortex in the rat: evidence of multiple pathways. Eur J Neurosci 15:1400–1407

    PubMed  CAS  Google Scholar 

  • Dong HW, Swanson LW (2006a) Projections from bed nuclei of the stria terminalis, magnocellular nucleus: implications for cerebral hemisphere regulation of micturition, defecation, and penile erection. J Comp Neurol 494:108–141

    PubMed  Google Scholar 

  • Dong HW, Swanson LW (2006b) Projections from bed nuclei of the stria terminalis, anteromedial area: cerebral hemisphere integration of neuroendocrine, autonomic, and behavioral aspects of energy balance. J Comp Neurol 494:142–178

    PubMed  Google Scholar 

  • Edelstein LR, Denaro FJ (2004) The claustrum: a historical review of its anatomy, physiology, cytochemistry and functional significance. Cell Mol Biol 50:675–702

    PubMed  CAS  Google Scholar 

  • Ferino F, Thierry AM, Glowinski J (1987) Anatomical and electrophysiological evidence for a direct projection from Ammon’s horn to the medial prefrontal cortex in the rat. Exp Brain Res 65:421–426

    PubMed  CAS  Google Scholar 

  • Floresco SB, Seamans JK, Phillips AG (1997) Selective roles for hippocampal, prefrontal cortical, and ventral striatal circuits in radial-arm maze tasks with or without a delay. J Neurosci 17:1880–1890

    PubMed  CAS  Google Scholar 

  • Floresco SB, Braaksma DN, Phillips AG (1999) Thalamic-cortical-striatal circuitry subserves working memory during delayed responding on a radial arm maze. J Neurosci 19:11061–11071

    PubMed  CAS  Google Scholar 

  • Floresco SB, Ghods-Sharifi S (2007) Amygdala-prefrontal cortical circuitry regulates effort-based decision making. Cereb Cortex 17:251–260

    PubMed  Google Scholar 

  • Foote SL, Bloom FE, Aston-Jones G (1983) Nucleus locus coeruleus: new evidence of anatomical and physiological specificity. Physiol Rev 63:844–914

    PubMed  CAS  Google Scholar 

  • Fuster JM (1989) The prefrontal cortex. Anatomy, physiology and neuropsychology of the frontal lobe, 2nd edn. Raven Press, New York

    Google Scholar 

  • Gabbott PLA, Warner TA, Jays PRL, Bacon SJ (2003) Areal and synaptic interconnectivity of paralimbic (area 32), infralimbic (area 25) and insular cortices in the rat. Brain Res 993:59–71

    PubMed  CAS  Google Scholar 

  • Gabbott PLA, Warner TA, Jays PRL, Salway P, Busby SJ (2005) Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers. J Comp Neurol 492:145–177

    PubMed  Google Scholar 

  • Gabbott PLA, Warner TA, Busby SJ (2006) Amygdala input monosynaptically innervates parvalbumin immunoreactive local circuit neurons in rat medial prefrontal cortex. Neuroscience 139:1039–1048

    PubMed  CAS  Google Scholar 

  • Garcia R, Vouimba RM, Baudry M, Thompson RF (1999) The amygdala modulates prefrontal cortex activity relative to conditioned fear. Nature 402:294–296

    PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS (1994) The issue of memory in the study of prefrontal function. In: Thierry AM, Glowinsky J, Goldman-Rakic PS, Christen Y (eds) Motor and cognitive functions of the prefrontal cortex. Springer, Berlin, pp 112–123

    Google Scholar 

  • Goto M, Swanson LW, Canteras NS (2001) Connections of the nucleus incertus. J Comp Neurol 438:86–122

    PubMed  CAS  Google Scholar 

  • Gritti I, Mainville L, Mancia M, Jones BE (1997) GABAergic and other noncholinergic basal forebrain neurons, together with cholinergic neurons, project to the mesocortex and isocortex in the rat. J Comp Neurol 383:163–177

    PubMed  CAS  Google Scholar 

  • Gritti I, Manns ID, Mainville L, Jones BE (2003) Parvalbumin, calbindin, or calretinin in cortically projecting and GABAergic, cholinergic, or glutamatergic basal forebrain neurons of the rat. J Comp Neurol 458:11–31

    PubMed  Google Scholar 

  • Groenewegen HJ (1988) Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal prefrontal topography. Neuroscience 24:379–431

    PubMed  CAS  Google Scholar 

  • Groenewegen HJ, Uylings HBM (2000) The prefrontal cortex and the integration of sensory, limbic and autonomic information. Prog Brain Res 126:3–28

    PubMed  CAS  Google Scholar 

  • Groenewegen HJ, Berendse HW, Wolters JG, Lohman AHM (1990) The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: evidence for a parallel organization. Prog Brain Res 85:95–118

    PubMed  CAS  Google Scholar 

  • Guandalini P (1998) The corticocortical projections of the physiologically defined eye field in the rat medial frontal cortex. Brain Res Bull 47:377–385

    PubMed  CAS  Google Scholar 

  • Hallanger AE, Wainer BH (1988) Ascending projections from the pedunculopontine tegmental nucleus and the adjacent mesopontine tegmentum in the rat. J Comp Neurol 274:483–515

    PubMed  CAS  Google Scholar 

  • Hardy SGP, Holmes DE (1988) Prefrontal stimulus-produced hypo-tension in rat. Exp Brain Res 73:249–255

    PubMed  CAS  Google Scholar 

  • Harrison LM, Mair RG (1996) A comparison of the effects of frontal cortical and thalamic lesions on measures of spatial learning and memory in the rat. Behav Brain Res 75:195–206

    PubMed  CAS  Google Scholar 

  • Heidbreder CA, Groenewegen HJ (2003) The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 27:555–579

    PubMed  Google Scholar 

  • Herkenham M (1978) The connections of the nucleus reuniens thalami: evidence for a direct thalamo-hippocampal pathway in the rat. J Comp Neurol 177:589–610

    PubMed  CAS  Google Scholar 

  • Herkenham M (1979) The afferent and efferent connections of the ventromedial thalamic nucleus in the rat. J Comp Neurol 183:487–517

    PubMed  CAS  Google Scholar 

  • Herrero MT, Insausti R, Gonzalo LM (1991a) Cortically projecting cells in the periaqueductal gray matter of the rat. A retrograde fluorescent tracer study. Brain Res 543:201–212

    PubMed  CAS  Google Scholar 

  • Herrero MT, Insausti R, Gonzalo LM (1991b) Cortical projections from the laterodorsal and dorsal tegmental nuclei. A fluorescent retrograde tracing study in the rat. Neurosci Lett 123:144–147

    PubMed  CAS  Google Scholar 

  • Hicks RR, Huerta MF (1991) Differential thalamic connectivity of rostral and caudal parts of cortical area Fr2 in rats. Brain Res 568:325–329

    PubMed  CAS  Google Scholar 

  • Hur EE, Zaborszky L (2005) Vglut2 afferents to the medial prefrontal and primary somatosensory cortices: a combined retrograde tracing in situ hybridization study. J Comp Neurol 483:351–373

    PubMed  Google Scholar 

  • Hurley KM, Herbert H, Moga MM, Saper CB (1991) Efferent projections of the infralimbic cortex of the rat. J Comp Neurol 308:249–276

    PubMed  CAS  Google Scholar 

  • Hurley-Gius KM, Neafsey EJ (1986) The medial frontal cortex and gastric motility: microstimulation results and their possible significance for the overall pattern of organization of rat frontal and parietal cortex. Brain Res 365:241–248

    PubMed  CAS  Google Scholar 

  • Insausti R, Herrero MT, Witter MP (1997) Entorhinal cortex of the rat: cytoarchitectonic subdivisions and the origin and distribution of cortical efferents. Hippocampus 7:146–183

    PubMed  CAS  Google Scholar 

  • Irle E, Markowitsch HJ (1982) Connections of the hippocampal formation, mamillary bodies, anterior thalamus and cingulate cortex. A retrograde study using horseradish peroxidase in the cat. Exp Brain Res 47:79–94

    PubMed  CAS  Google Scholar 

  • Jasmin L, Granato A, Ohara PT (2004) Rostral agranular insular cortex and pain areas of the central nervous system: a tract-tracing study in the rat. J Comp Neurol 468:425–440

    PubMed  Google Scholar 

  • Jay TM, Witter MP (1991) Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris-leucoagglutinin. J Comp Neurol 313:574–586

    PubMed  CAS  Google Scholar 

  • Jay TM, Glowinski J, Thierry AM (1989) Selectivity of the hippocampal projection to the paralimbic area of the prefrontal cortex in the rat. Brain Res 505:337–340

    PubMed  CAS  Google Scholar 

  • Jimenez-Capdeville ME, Dykes RW, Myasnikov AA (1997) Differential control of cortical activity by the basal forebrain in rats: a role for both cholinergic and inhibitory influences. J Comp Neurol 381:53–67

    PubMed  CAS  Google Scholar 

  • Jones BE (2004) Activity, modulation and role of basal forebrain cholinergic neurons innervating the cerebral cortex. Prog Brain Res 145:157–169

    PubMed  CAS  Google Scholar 

  • Jones BF, Groenewegen HJ, Witter MP (2005) Intrinsic connections of the cingulate cortex in the rat suggest the existence of multiple functionally segregated networks. Neuroscience 133:193–207

    PubMed  CAS  Google Scholar 

  • Kalivas PW, Jackson D, Romanidies A, Wyndham L, Duffy P (2001) Involvement of pallidothalamic circuitry in working memory. Neuroscience 104:129–136

    PubMed  CAS  Google Scholar 

  • King VR, Corwin JV (1993) Comparisons of hemi-inattention produced by unilateral lesions of the posterior parietal cortex or medial agranular prefrontal cortex in rats: neglect, extinction, and the role of stimulus distance. Behav Brain Res 54:117–131

    PubMed  CAS  Google Scholar 

  • King V, Corwin JV, Reep RL (1989) Production and characterization of neglect in rats with unilateral lesions of ventrolateral orbital cortex. Exp Neurol 105:287–299

    PubMed  CAS  Google Scholar 

  • Kita H, Kitai ST (1990) Amygdaloid projections to the frontal cortex and the striatum in the rat. J Comp Neurol 298:40–49

    PubMed  CAS  Google Scholar 

  • Koenigs M, Tranel D (2007) Irrational economic decision-making after ventromedial prefrontal damage: evidence from the Ultimatum Game. J Neurosci 27:951–956

    PubMed  CAS  Google Scholar 

  • Kolb B (1984) Functions of the frontal cortex of the rat: a comparative review. Brain Res Rev 8:65–98

    Google Scholar 

  • Kolb B (1990) Animal models for human PFC-related disorders. Prog Brain Res 85:501–519

    PubMed  CAS  Google Scholar 

  • Kowianski P, Morys J, Karwacki Z, Dziewiatkowski J, Narkiewicz O (1998) The cortico-related zones of the rabbit claustrum: study of the claustrocortical connections based on the retrograde axonal transport of fluorescent tracers. Brain Res 784:199–209

    PubMed  CAS  Google Scholar 

  • Krettek JE, Price JL (1977) The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J Comp Neurol 171:157–191

    PubMed  CAS  Google Scholar 

  • Krout KE, Belzer RE, Loewy AD (2002) Brainstem projections to midline and intralaminar thalamic nuclei of the rat. J Comp Neurol 448:53–101

    PubMed  Google Scholar 

  • LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:55–184

    Google Scholar 

  • Leonard CM (1969) The prefrontal cortex of the rat. I. Cortical projection of the mediodorsal nucleus. II. Efferent connections. Brain Res 12:321–343

    PubMed  CAS  Google Scholar 

  • Loughlin SE, Fallon JH (1984) Substantia nigra and ventral tegmental area projections to cortex: topography and collateralization. Neuroscience 11:425–435

    PubMed  CAS  Google Scholar 

  • Luiten PGM, Gaykema RPA, Traber J, Spencer DG Jr (1987) Cortical projection patterns of magnocellular basal nucleus subdivisions as revealed by anterogradely transported Phaseolus vulgaris leucoagglutinin. Brain Res 413:229–250

    PubMed  CAS  Google Scholar 

  • Majak K, Kowianski P, Morys J, Spodnik J, Karwacki Z, Wisniewski HM (2000) The limbic zone of the rabbit and rat claustrum: a study of the claustrocingulate connections based on the retrograde axonal transport of fluorescent tracers. Anat Embryol 201:15–25

    PubMed  CAS  Google Scholar 

  • Markowitsch HJ, Irle E, Bangolsen R, Flindtegebak P (1984) Claustral efferents to the cats limbic cortex studied with retrograde and anterograde tracing techniques. Neuroscience 12:409–425

    PubMed  CAS  Google Scholar 

  • Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45:651–660

    PubMed  CAS  Google Scholar 

  • McDonald AJ (1987) Organization of amygdaloid projections to the mediodorsal thalamus and prefrontal cortex: a fluorescence retrograde transport study in the rat. J Comp Neurol 262:46–58

    PubMed  CAS  Google Scholar 

  • McDonald AJ (1991) Organization of amygdaloid projections to the prefrontal cortex and associated striatum in the rat. Neuroscience 44:1–14

    PubMed  CAS  Google Scholar 

  • McKenna JT, Vertes RP (2004) Afferent projections to nucleus reuniens of the thalamus. J Comp Neurol 480:115–142

    PubMed  Google Scholar 

  • Moga MM, Weis RP, Moore RY (1995) Efferent projections of the paraventricular thalamic nucleus in the rat. J Comp Neurol 359:221–238

    PubMed  CAS  Google Scholar 

  • Morin LP, Meyer-Bernstein EL (1999) The ascending serotonergic system in the hamster: comparison with projections of the dorsal and median raphe nuclei. Neuroscience 91:81–105

    PubMed  CAS  Google Scholar 

  • Neafsey EJ (1990) Prefrontal cortical control of the autonomic nervous system: anatomical and physiological observations. Prog Brain Res 85:147–166

    PubMed  CAS  Google Scholar 

  • Nunez A (1996) Unit activity of rat basal forebrain neurons: relationship to cortical activity. Neuroscience 72:757–766

    PubMed  CAS  Google Scholar 

  • Ohtake T, Yamada H (1989) Efferent connections of the nucleus reuniens and the rhomboid nucleus in the rat: an anterograde PHA-L tracing study. Neurosci Res 6:556–568

    PubMed  CAS  Google Scholar 

  • Olucha-Bordonau FE, Teruel V, Barcia-Gonzalez J, Ruiz-Torner A, Valverde-Navarro AA, Martinez-Soriano F (2003) Cytoarchitecture and efferent projections of the nucleus incertus of the rat. J Comp Neurol 464:62–97

    PubMed  Google Scholar 

  • Ongur D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10:206–219

    PubMed  CAS  Google Scholar 

  • Papez JW (1937) A proposed mechanism of emotion. Arch Neurol Psychiatr 38:725–743

    Google Scholar 

  • Pare D (2003) Role of the basolateral amygdala in memory consolidation. Prog Neurobiol 70:409–420

    PubMed  CAS  Google Scholar 

  • Pare D, Quirk GJ, LeDoux JE (2004) New vistas on amygdala networks in conditioned fear. J Neurophysiol 92:1–9

    PubMed  Google Scholar 

  • Petrides M (1998) Specialized systems for the processing of mnemonic information within the primate frontal cortex. In: Roberts AC, Robbins TW, Weiskrantz L (eds) The prefrontal cortex: executive and cognitive functions. Oxford University Press, New York, pp 103–116

    Google Scholar 

  • Ragozzino ME, Adams S, Kesner RP (1998) Differential involvement of the dorsal anterior cingulate and prelimbic-infralimbic areas of the rodent prefrontal cortex in spatial working memory. Behav Neurosci 112:293–303

    PubMed  CAS  Google Scholar 

  • Ray JP, Price JL (1992) The organization of the thalamocortical connections of the mediodorsal thalamic nucleus in the rat, related to the ventral forebrain prefrontal cortex topography. J Comp Neurol 323:167–197

    PubMed  CAS  Google Scholar 

  • Reep RL, Winans SS (1982) Efferent connections of dorsal and ventral agranular insular cortex in the hamster, Mesocricetus auratus. Neuroscience 7:2609–2635

    PubMed  CAS  Google Scholar 

  • Reep RL, Corwin JV (1999) Topographic organization of the striatal and thalamic connections of rat medial agranular cortex. Brain Res 841:43–52

    PubMed  CAS  Google Scholar 

  • Reep RL, Corwin JV, Hashimoto A, Watson RT (1984) Afferent connections of medial precentral cortex in the rat. Neurosci Lett 44:247–252

    PubMed  CAS  Google Scholar 

  • Reep RL, Goodwin GS, Corwin JV (1990) Topographic organization in the corticocortical connections of medial agranular cortex in rats. J Comp Neurol 294:262–280

    PubMed  CAS  Google Scholar 

  • Reep RL, Chandler HC, King V, Corwin JV (1994) Rat posterior parietal cortex: topography of corticocortical and thalamic connections. Exp Brain Res 100:67–84

    PubMed  CAS  Google Scholar 

  • Reep RL, Cheatwood JL, Corwin JV (2003) The associative striatum: organization of cortical projections to the dorsocentral striatum in rats. J Comp Neurol 467:271–292

    PubMed  Google Scholar 

  • Repovs G, Baddeley A (2006) The multi-component model of working memory: explorations in experimental cognitive psychology. Neuroscience 139:5–21

    PubMed  CAS  Google Scholar 

  • Risold PY, Thompson RH, Swanson LW (1997) The structural organization of connections between hypothalamus and cerebral cortex. Brain Res Rev 24:197–254

    PubMed  CAS  Google Scholar 

  • Romanides AJ, Duffy P, Kalivas PW (1999) Glutamatergic and dopaminergic afferents to the prefrontal cortex regulate spatial working memory in rats. Neuroscience 92:97–106

    PubMed  CAS  Google Scholar 

  • Room P, Russchen FT, Groenewegen HJ, Lohman AHM (1985) Efferent connections of the paralimbic (area 32) and the infralimbic (area 25) cortices: an anterograde tracing study in the cat. J Comp Neurol 242:40–55

    PubMed  CAS  Google Scholar 

  • Roozendaal B, McReynolds JR, McGaugh JL (2004) The basolateral amygdala interacts with the medial prefrontal cortex in regulating glucocorticoid effects on working memory impairment. J Neurosci 24:1385–1392

    PubMed  CAS  Google Scholar 

  • Ruggiero DA, Mraovitch S, Granata AR, Anwar M, Reis DJ (1987) A role of insular cortex in cardiovascular function. J Comp Neurol 257:189–207

    PubMed  CAS  Google Scholar 

  • Rye DB, Wainer BH, Mesulam MM, Mufson EJ, Saper CB (1984) Cortical projections arising from the basal forebrain: a study of cholinergic and noncholinergic components employing combined retrograde tracing and immunohistochemical localization of choline acetyltransferase. Neuroscience 13:627–643

    PubMed  CAS  Google Scholar 

  • Salinas JA, Packard MG, McGaugh JL (1993) Amygdala modulates memory for changes in reward magnitude: reversal post-training inactivation with lidocaine attenuates the response to a reduction in reward. Behav Brain Res 59:153–159

    PubMed  CAS  Google Scholar 

  • Saper CB (1982) Convergence of autonomic and limbic connections in the insular cortex of the rat. J Comp Neurol 210:163–173

    PubMed  CAS  Google Scholar 

  • Saper CB (1984) Organization of cerebral cortical afferent systems in the rat. I. Magnocellular basal nucleus. J Comp Neurol 222:313–342

    PubMed  CAS  Google Scholar 

  • Sarter M, Hasselmo ME, Bruno JP, Givens B (2005) Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brain Res Rev 48:98–111

    PubMed  CAS  Google Scholar 

  • Satoh K, Fibiger HC (1986) Cholinergic neurons of the laterodorsal tegmental nucleus: efferent and afferent connections. J Comp Neurol 253:277–302

    PubMed  CAS  Google Scholar 

  • Seamans JK, Yang CR (2004) The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 74:1–58

    PubMed  CAS  Google Scholar 

  • Seamans JK, Floresco SB, Phillips AG (1995) Functional differences between the paralimbic and anterior cingulate regions of the rat prefrontal cortex. Behav Neurosci 109:1063–1073

    PubMed  CAS  Google Scholar 

  • Seamans JK, Floresco SB, Phillips AG (1998) D1 receptor modulation of hippocampal-prefrontal cortical circuits integrating spatial memory with executive functions in the rat. J Neurosci 18:1613–1621

    PubMed  CAS  Google Scholar 

  • Sesack SR, Deutch AY, Roth RH, Bunney BS (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol 290:213–242

    PubMed  CAS  Google Scholar 

  • Sherk H (1988) The claustrum and the cerebral cortex. In: Jones EG, Peters A (eds) Cerebral cortex, vol 5. Sensory-motor areas and aspects of cortical connectivity. Plenum Press, New York, pp 467–499

    Google Scholar 

  • Shi CJ, Cassell MD (1998) Cortical, thalamic, and amygdaloid connections of the anterior and posterior insular cortices. J Comp Neurol 399:440–468

    PubMed  CAS  Google Scholar 

  • Shibata H, Kato A (1993) Topographic relationship between anteromedial thalamic nucleus neurons and their cortical terminal fields in the rat. Neurosci Res 17:63–69

    PubMed  CAS  Google Scholar 

  • Shibata H, Kondo S, Naito J (2004) Organization of retrosplenial cortical projections to the anterior cingulate, motor, and prefrontal cortices in the rat. Neurosci Res 49:1–11

    PubMed  Google Scholar 

  • Sloniewski P, Usunoff KG, Pilgrim C (1986) Retrograde transport of fluorescent tracers reveals extensive ipsilateral and contralateral claustrocortical connections in the rat. J Comp Neurol 246:467–477

    PubMed  CAS  Google Scholar 

  • Sripanidkulchai K, Wyss JM (1986) Thalamic projections to retrosplenial cortex in the rat. J Comp Neurol 254:143–165

    PubMed  CAS  Google Scholar 

  • Sutherland RJ, Whishaw IQ, Kolb B (1988) Contributions of cingulate cortex to two forms of spatial learning and memory. J Neurosci 8:1863–1872

    PubMed  CAS  Google Scholar 

  • Swanson LW (1982) The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull 9:321–353

    PubMed  CAS  Google Scholar 

  • Swanson LW (1981) A direct projection from Ammon’s horn to prefrontal cortex in the rat. Brain Res 217:150–154

    PubMed  CAS  Google Scholar 

  • Swanson LW (1998) Brain maps: structure of the rat brain. Elsevier, New York

    Google Scholar 

  • Swanson LW, Kohler C (1986) Anatomical evidence for direct projections from the entorhinal area to the entire cortical mantle in the rat. J Neurosci 6:3010–3023

    PubMed  CAS  Google Scholar 

  • Takagishi M, Chiba T (1991) Efferent projections of the infralimbic (area 25) region of the medial prefrontal cortex in the rat: an anterograde tracer PHA-L study. Brain Res 566:26–39

    PubMed  CAS  Google Scholar 

  • Terreberry RR, Neafsey EJ (1983) Rat medial frontal cortex: a visceral motor region with a direct projection to the solitary nucleus. Brain Res 278:245–249

    PubMed  CAS  Google Scholar 

  • Uylings HBM, van Eden CG (1990) Qualitative and quantitative comparison of the prefrontal cortex in rat and in primates, including humans. Prog Brain Res 85:31–62

    Article  PubMed  CAS  Google Scholar 

  • Van der Werf YD, Witter MP, Groenewegen HJ (2002) The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Rev 39:107–140

    PubMed  Google Scholar 

  • van Eden CG, Lamme VA, Uylings HB (1992) Heterotopic cortical afferents to the medial prefrontal cortex in the rat. A combined retrograde and anterograde tracer study. Eur J Neurosci 4:77–97

    PubMed  Google Scholar 

  • van Groen T, Wyss JM (1990a) Connections of the retrosplenial granular a cortex in the rat. J Comp Neurol 300:593–606

    PubMed  Google Scholar 

  • van Groen T, Wyss JM (1990b) The connections of presubiculum and parasubiculum in the rat. Brain Res 518:227–243

    PubMed  Google Scholar 

  • van Groen T, Wyss JM (1992) Connections of the retrosplenial dysgranular cortex in the rat. J Comp Neurol 315:200–216

    PubMed  Google Scholar 

  • van Groen T, Wyss JM (2003) Connections of the retrosplenial granular b cortex in the rat. J Comp Neurol 463:249–263

    PubMed  Google Scholar 

  • van Groen T, Kadish I, Wyss JM (1999) Efferent connections of the anteromedial nucleus of the thalamus of the rat. Brain Res Rev 30:1–26

    PubMed  Google Scholar 

  • Van Vleet TM, Heldt SA, Corwin JV, Reep RL (2003) Infusion of apomorphine into the dorsocentral striatum produces acute drug-induced recovery from neglect produced by unilateral medial agranular cortex lesions in rats. Behav Brain Res 143:147–157

    PubMed  Google Scholar 

  • Vann SD, Aggleton JP (2002) Extensive cytotoxic lesions of the rat retrosplenial cortex reveal consistent deficits on tasks that tax allocentric spatial memory. Behav Neurosci 116:85–94

    PubMed  Google Scholar 

  • Verberne AJ, Lewis SJ, Worland PJ, Beart PM, Jarrott B, Christie MJ, Louis WJ (1987) Medial prefrontal cortical lesions modulate baroreflex sensitivity in the rat. Brain Res 426:243–249

    PubMed  CAS  Google Scholar 

  • Vertes RP (1991) A PHA-L analysis of ascending projections of the dorsal raphe nucleus in the rat. J Comp Neurol 313:643–668

    PubMed  CAS  Google Scholar 

  • Vertes RP (1992) PHA-L analysis of projections from the supramammillary nucleus in the rat. J Comp Neurol 326:595–622

    PubMed  CAS  Google Scholar 

  • Vertes RP (2002) Analysis of projections from the medial prefrontal cortex to the thalamus in the rat, with emphasis on nucleus reuniens. J Comp Neurol 442:163–187

    PubMed  Google Scholar 

  • Vertes RP (2004) Differential projections of the infralimbic and paralimbic cortex in the rat. Synapse 51:32–58

    PubMed  CAS  Google Scholar 

  • Vertes RP (2006) Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience 142:1–20

    PubMed  CAS  Google Scholar 

  • Vertes RP, Martin GF (1988) Autoradiographic analysis of ascending projections from the pontine and mesencephalic reticular formation and the median raphe nucleus in the rat. J Comp Neurol 275:511–541

    PubMed  CAS  Google Scholar 

  • Vertes RP, Crane AM, Colom LV, Bland BH (1995) Ascending projections of the posterior nucleus of the hypothalamus: PHA-L analysis in the rat. J Comp Neurol 359:90–116

    PubMed  CAS  Google Scholar 

  • Vertes RP, Fortin WJ, Crane AM (1999) Projections of the median raphe nucleus in the rat. J Comp Neurol 407:555–582

    PubMed  CAS  Google Scholar 

  • Vertes RP, Hoover WB, Do Valle AC, Sherman A, Rodriguez JJ (2006) Efferent projections of reuniens and rhomboid nuclei of the thalamus in the rat. J Comp Neurol 499:768–796

    PubMed  Google Scholar 

  • Vertes RP, Hoover WB, Szigeti-Buck K, Leranth C (2007) Nucleus reuniens of the midline thalamus: Link between the medial prefrontal cortex and the hippocampus. Brain Res Bull 71:601–609

    PubMed  Google Scholar 

  • Waterhouse BD, Lin CS, Burne RA, Woodward DJ (1983) The distribution of neocortical projection neurons in the locus coeruleus. J Comp Neurol 217:418–431

    PubMed  CAS  Google Scholar 

  • Witter MP, Room P, Groenewegen HJ, Lohman AHM (1988) Reciprocal connections of the insular and piriform claustrum with limbic cortex: an anatomical study in the cat. Neuroscience 24:519–539

    PubMed  CAS  Google Scholar 

  • Woolf NJ (1991) Cholinergic systems in mammalian brain and spinal cord. Prog Neurobiol 37:475–524

    PubMed  CAS  Google Scholar 

  • Woolf NJ, Eckenstein F, Butcher LL (1984) Cholinergic systems in the rat brain: I. projections to the limbic telencephalon. Brain Res Bull 13:751–784

    PubMed  CAS  Google Scholar 

  • Wouterlood FG, Saldana E, Witter MP (1990) Projection from the nucleus reuniens thalami to the hippocampal region: Light and electron microscopic tracing study in the rat with the anterograde tracer Phaseolus vulgaris-leucoagglutinin. J Comp Neurol 296:179–203

    PubMed  CAS  Google Scholar 

  • Yasui Y, Breder CD, Saper CB, Cechetto DF (1991) Autonomic responses and efferent pathways from the insular cortex in the rat. J Comp Neurol 303:355–374

    PubMed  CAS  Google Scholar 

  • Zaborszky L (2002) The modular organization of brain systems. Basal forebrain: the last frontier. Prog Brain Res 136:359–372

    PubMed  Google Scholar 

  • Zaborszky L, Carlsen J, Brashear HR, Heimer L (1986) Cholinergic and GABAergic afferents to the olfactory bulb in the rat with special emphasis on the projection neurons in the nucleus of the horizontal limb of the diagonal band. J Comp Neurol 243:488–509

    PubMed  CAS  Google Scholar 

  • Zaborszky L, Pang K, Somogyi J, Nadasdy Z, Kallo I (1999) The basal forebrain corticopetal system revisited. Ann NY Acad Sci 877:339–367

    PubMed  CAS  Google Scholar 

  • Zhang X, Hannesson DK, Saucier DM, Wallace AE, Howland J, Corcoran ME (2001) Susceptibility to kindling and neuronal connections of the anterior claustrum. J Neurosci 21:3674–3687

    PubMed  CAS  Google Scholar 

  • Zilles K (1985) The cortex of the rat: a stereotaxic atlas. Springer, Berlin, Heidelberg, New York, Tokyo

    Google Scholar 

  • Zilles K, Wree A (1995) Cortex. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic, New York, pp 649–685

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert P. Vertes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoover, W.B., Vertes, R.P. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct 212, 149–179 (2007). https://doi.org/10.1007/s00429-007-0150-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-007-0150-4

Keywords

Navigation