Skip to main content

Advertisement

Log in

Nitric oxide synthase-containing neurons in the amygdaloid nuclear complex of the rat

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

The nitric oxide-producing neurons in the rat amygdala (Am) were studied, using reduced nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry. Almost all nuclei of the Am contained NADPHd-positive neurons and fibers, but the somatodendritic morphology and the intensity of staining of different subpopulations varied. The strongly stained neurons displayed labeling of the perikaryon and the dendritic tree with Golgi impregnation-like quality, whilst the dendrites of the lightly stained neurons were less successfully followed. Many strongly positive neurons were located in the external capsule and within the intraamygdaloid fiber bundles. A large number of small, strongly stained cells was present in the amygdalostriatal transition area. In the Am proper, a condensation of deeply stained cells occurred in the lateral amygdaloid nucleus. In the basolateral nucleus, the strongly NADPHd-positive neurons were few, and were located mainly along the lateral border of the nucleus. These cells clearly differed from the large, pyramidal, and efferent cells. The basomedial nucleus contained numerous positive cells but most of them were only lightly labeled. A moderate number of strongly stained neurons appeared in the medial division of the central nucleus, and a larger accumulation of strongly positive cells was present in the lateral and the capsular divisions. The medial amygdaloid nucleus contained numerous moderately stained neurons and displayed the strongest diffuse neuropil staining in Am. In the nucleus of the lateral olfactory tract, the first layer contained only NADPHd-stained axons, in the second layer, there were numerous moderately stained cells, and in the third layer, a few but deeply stained neurons. From the cortical nuclei, the most appreciable number of stained neurons was seen in the anterior cortical nucleus. The anterior amygdaloid area contained numerous NADPHd-positive neurons; in its dorsal part the majority of cells were only moderately stained, whereas in the ventral part the neurons were very strongly stained. The intercalated amygdaloid nucleus lacked NADPHd-positive neurons but an appreciable plexus of fine, tortuous axons was present. In the intra-amygdaloid part of the bed nucleus of the stria terminalis (st) some lightly stained cells were seen but along the entire course of st strongly stained neurons were observed. Some Am nuclei, and especially the central lateral nucleus and the intercalated nucleus, display considerable species differences when compared with the primate Am. The age-related changes of the nitrergic Am neurons, as well as their involvement in neurodegenerative diseases is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AA:

Anterior amygdaloid area

AAD:

Anterior amygdaloid area, dorsal part

AAV:

Anterior amygdaloid area, ventral part

ACo:

Anterior cortical amygdaloid nucleus

Am:

Amygdala, amygdaloid nuclear complex

AStr:

Amygdalostriatal transition area

BL:

Basolateral amygdaloid nucleus

BM:

Basomedial amygdaloid nucleus

BST:

Bed nucleus of the stria terminalis

BSTIA:

Bed nucleus of the stria terminalis, intraamygdaloid division

Ce:

Central amygdaloid nucleus

CeC:

Central amygdaloid nucleus, capsular division

CeL:

Central amygdaloid nucleus, lateral division

CeM:

Central amygdaloid nucleus, medial division

Co:

Cortical amygdaloid nuclei

DEn:

Dorsal endopiriform nucleus

IM:

Intercalated amygdaloid nucleus

iNOS:

Inducible nitric oxide synthase

La:

Lateral amygdaloid nucleus

LOT:

Nucleus of the lateral olfactory tract

LOT 1:

Nucleus of the lateral olfactory tract, first layer

LOT 2:

Nucleus of the lateral olfactory tract, second layer

LOT 3:

Nucleus of the lateral olfactory tract, third layer

Me:

Medial amygdaloid nucleus

MeAV:

Medial amygdaloid nucleus, anteroventral part

NADPHd:

Nicotinamide adenine dinucleotide phosphate diaphorase

nNOS:

Neuronal nitric oxide synthase

NO:

Nitric oxide

NOS:

Nitric oxide synthase

OT:

Optic tract

PB:

Phosphate buffer

PBS:

Phosphate buffered saline

Pir:

Piriform cortex

PLCo:

Posterolateral cortical amygdaloid nucleus

PRh:

Perirhinal cortex

st:

Stria terminalis

VEn:

Ventral endopiriform nucleus

References

  • Aggleton JP (ed) (1992) The amygdala: neurobiological aspects of emotion, memory and mental dysfunction. Wiley-Liss, New York

  • Aggleton JP (ed) (2000) The amygdala, a functional analysis, 2nd edn. Oxford University Press, Oxford

  • Akbarian S, Bunney WE, Potkin SG, Wigal SB, Hagman JO, Sanfman CA, Jones EG (1993a) Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. Arch Gen Psychiatry 50:169–177

    PubMed  CAS  Google Scholar 

  • Akbarian S, Vinuela A, Kim JJ, Potkin SG, Bunney WE Jr, Jones EG (1993b) Distorted distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase neurons in temporal lobe of schizophrenics implies anomalous cortical development. Arch Gen Psychiatry 50:178–187

    PubMed  CAS  Google Scholar 

  • Aley KO, McCarter G, Levine JD (1998) Nitric oxide signaling in pain and nociceptor sensitization in the rat. J Neurosci 18:7008–7014

    PubMed  CAS  Google Scholar 

  • Alheid GF, de Olmos JS, Beltramino CA (1995) Amygdala and extended amygdala. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic, San Diego

    Google Scholar 

  • Alheid GF, Beltramino CA, de Olmos JS, Forbes MS, Swanson DJ, Heimer L (1998) The neuronal organization of the supracapsular part of the stria terminalis: the dorsal component of the extended amygdala. Neuroscience 84:967–996

    Article  PubMed  CAS  Google Scholar 

  • Aliashkevich AF, Yilmazer-Hanke D, Van Roost D, Mundhenk B, Schramm J, Blumcke I (2003) Cellular pathology of amygdala neurons in human temporal lobe epilepsy. Acta Neuropathol (Berl) 106:99–106

    Article  Google Scholar 

  • Allen JS, Bruss J, Brown CK, Damasio H (2005) Normal neuroanatomical variation due to age: the major lobes and a parcellation of the temporal region. Neurobiol Aging 26:1271–1274

    Article  Google Scholar 

  • Amaral DG, Price JL, Pitkänen A, Carmichael ST (1992) Anatomical organization of the primate amygdaloid complex. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory and mental dysfunction. Wiley-Liss, New York, pp 1–66

    Google Scholar 

  • Amaral DG, Bauman MD, Schumann CM (2003) The amygdala and autism: implications from non-human primate studies. Genes Brain Behav 2:295–302

    Article  PubMed  CAS  Google Scholar 

  • Asan E (1998) The catecholaminergic innervation of the rat amygdala. Adv Anat Embryol Cell Biol 142:1–118

    PubMed  CAS  Google Scholar 

  • Ashwell KWS, Hardman CD, Paxinos G (2005) Cyto- and chemoarchitecture of the amygdala of a monotreme, Tachyglossus aculeatus (the short-beaked echidna). J Chem Neuroanat 30:82–104

    Article  PubMed  CAS  Google Scholar 

  • Baba H, Suzuki T, Arai H, Emson PC (2004) Expression of nNOS and soluble guanylate cyclase in schizophrenic brain. Neuroreport 15:677–680

    Article  PubMed  CAS  Google Scholar 

  • Bauman ML, Kemper TL (2003) The neuropathology of the autism spectrum disorders: what have we learned? Novartis Found Symp 251:112–122

    Article  PubMed  Google Scholar 

  • Bauman ML, Kemper TL (2005) Neuroanatomic observations of the brain in autism: a review and future directions. Int J Dev Neurosci 23:183–187

    Article  PubMed  Google Scholar 

  • Ben-Ari Y (ed) (1981) The amygdaloid complex. Elsevier, Amsterdam

  • Benzing WC, Mufson EJ (1995) Increased number of NADPH-d-positive neurons within the substantia innominata in Alzheimer’s disease. Brain Res 670:351–355

    Article  PubMed  CAS  Google Scholar 

  • Benzing WC, Mufson EJ, Armstrong DM (1993) Immunocytochemical distribution of peptidergic and cholinergic fibers in the human amygdala: their depletion in Alzheimer’s disease and morphologic alteration in non-demented elderly with numerous senile plaques. Brain Res 625:125–138

    Article  PubMed  CAS  Google Scholar 

  • Bernstein HG, Stanarius A, Baumann B, Henning H, Krell D, Danos P, Falkai P, Bogerts B (1998) Nitric oxide synthase-containing neurons in the human hypothalamus: reduced number of immunoreactive cells in the paraventricular nucleus of depressive patients and schizophrenics. Neuroscience 83:867–875

    Article  PubMed  CAS  Google Scholar 

  • Bernstein HG, Krell D, Braunewell KH, Baumann B, Gundelfinger ED, Diekmann S, Danos P, Bogerts B (2001) Increased number of nitric oxide synthase immunoreactive Purkinje cells and dentate nucleus neurons in schizophrenics. J Neurocytol 30:661–670

    Article  PubMed  CAS  Google Scholar 

  • Bertini G, Bentivoglio M (1997) Nitric oxide synthase in the adult and developing thalamus: histochemical and immunohistochemical study in the rat. J Comp Neurol 388:89–105

    Article  PubMed  CAS  Google Scholar 

  • Bidmon HJ, Wu J, Gödecke A, Schleicher A, Mayer B, Zilles K (1997) Nitric oxide synthase-expressing neurons are area-specifically distributed within the cerebral cortex of the rat. Neuroscience 81:321–330

    Article  PubMed  CAS  Google Scholar 

  • Blottner D, Grozdanovic Z, Gossrau R (1995) Histochemistry of nitric oxide synthase in the nervous system. Histochem J 27:785–811

    PubMed  CAS  Google Scholar 

  • Bogerts B (1993) Recent advances in the neuropathology of schizophrenia. Schizophr Bull 19:431–445

    PubMed  CAS  Google Scholar 

  • Bogerts B, Falkai P, Greve B, Schneider T, Pfeiffer U (1993) The neuropathology of schizophrenia: past and present. J Hirnforsch 34:193–205

    PubMed  CAS  Google Scholar 

  • Bourgeais L, Gauriau C, Bernard JF (2001) Projections from the nociceptive area of the central nucleus of the amygdala to the forebrain: a PHA-L study in the rat. Eur J Neurosci 14:229–255

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 82:239–259

    Article  CAS  Google Scholar 

  • Braak H, Braak E, Yilmazer D, de Vos RA, Jansen EN, Bohl J (1996) Pattern of brain destruction in Parkinson’s and Alzheimer’s diseases. J Neural Transm 103:455–490

    Article  PubMed  CAS  Google Scholar 

  • Brady DR, Mufson EJ (1990) Amygdaloid pathology in Alzheimer’s disease: qualitative and quantitative analysis. Dementia 1:5–17

    Article  Google Scholar 

  • Brady DR, Carey RG, Mufson EJ (1992) Reduced nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) profiles in the amygdala of human and New World monkey (Saimiri sciureus). Brain Res 577:236–248

    Article  PubMed  CAS  Google Scholar 

  • Bredt DS, Snyder SH (1992) Nitric oxide: a novel neuronal messenger. Neuron 8:3–11

    Article  PubMed  CAS  Google Scholar 

  • Brockhaus H (1938) Zur normalen und pathologischen Anatomie des Mandelkerngebietes. J Psychol Neurol 49:1–136

    Google Scholar 

  • Bruton CJ (1988) The neuropathology of temporal lobe epilepsy. Oxford University Press, New York

    Google Scholar 

  • Burette A, Zabel U, Weinberg RJ, Schmidt HHHW, Valtschanoff JG (2002) An anatomical substrate in hippocampus for retrograde signaling via the NOS-sGC pathway. J Neurosci 22:8691–8970

    Google Scholar 

  • Butcher LL, Oh JD, Woolf NJ, Edwards RH, Roghani A (1992) Organization of central cholinergic neurons revealed by combined in situ hybridization histochemistry and choline-O-acetyltransferase immunocytochemistry. Neurochem Int 21:429–445

    Article  PubMed  CAS  Google Scholar 

  • Buzzi MG, Moskowitz MA (2005) The pathophysiology of migraine: year 2005. J Headache Pain 6:105–111

    Article  PubMed  Google Scholar 

  • Carlsen J, Heimer L (1986) A correlated light and electron microscopic immunocytochemical study of cholinergic terminals and neurons in the rat amygdaloid body with special emphasis on the basolateral amygdaloid nucleus. J Comp Neurol 244:121–136

    Article  PubMed  CAS  Google Scholar 

  • Chow TW, Cummings JL (2000) The amygdala and Alzheimer’s disease. In: Aggleton JP (ed) The amygdala, a functional analysis, 2nd edn. Oxford University Press, Oxford, pp 655–680

    Google Scholar 

  • Dawson TH, Snyder SH (1994) Gases as biological messengers: nitric oxide and carbon monoxide in the brain. J Neurosci 14:5147–5159

    PubMed  CAS  Google Scholar 

  • Dawson TM, Bredt DS, Fotuhi M, Hwang PM, Snyder SH (1991) Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc Natl Acad Sci USA 88:7797–7801

    Article  PubMed  CAS  Google Scholar 

  • de Olmos JS (1990) Amygdala. In: Paxinos G (ed) The human nervous system. Academic Press, San Diego, CA, pp 583–710

    Google Scholar 

  • de Olmos JS (2004) Amygdala. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier Academic Press, San Diego, CA, pp 739–868

    Google Scholar 

  • de Olmos JS, Beltramino CA, Alheid G (2004) Amygdala and extended amygdala of the rat: a cytoarchitectonical, fibroarchitectonical, and chemoarchitectonical survey. In: Paxinos G (eds) The rat nervous system, 3nd edn. Elsevier Academic Press, San Diego, CA, pp 509–603

    Google Scholar 

  • Deckel AW (2001) Nitric oxide and nitric oxide synthase in Huntington’s disease. J Neurosci Res 64:99–107

    Article  PubMed  CAS  Google Scholar 

  • Ding JD, Weinberg RJ (2006) Localization of soluble guanylyl cyclase in the superficial dorsal horn. J Comp Neurol 495:668–678

    Article  PubMed  CAS  Google Scholar 

  • Downen M, Zhao ML, Lee P, Weidenheim KM, Dickson DW, Lee SC (1999) Neuronal nitric oxide synthase expression in developing and adult human CNS. J Neuropathol Exp Neurol 58:12–21

    Article  PubMed  CAS  Google Scholar 

  • Echeverry MB, Guimaraes FS, Del Bel EA (2004) Acute and delayed restraint stress-induced changes in nitric oxide producing neurons in limbic regions. Neuroscience 125:981–993

    Article  PubMed  CAS  Google Scholar 

  • Egberongbe YI, Gentleman SM, Falkai P, Bogerts B, Polak JM, Roberts GW (1994) The distribution of nitric oxide synthase immunoreactivity in the human brain. Neuroscience 59:561–578

    Article  PubMed  CAS  Google Scholar 

  • Eleftheriou BE (ed) (1973) The neurobiology of the amygdala. Plenum Press, New York

  • Emre M, Heckers S, Mash DC, Geula C, Mesulam M-M (1993) Cholinergic innervation of the amygdaloid complex in the human brain and its alterations in old age and Alzheimer’s disease. J Comp Neurol 336:117–134

    Article  PubMed  CAS  Google Scholar 

  • Esiri MM, Pearson RCA, Steele JE, Bowen DM, Powell TPS (1990) A quantitative study of the neurofibrillary tangles and the choline acetyltransferase activity in the cerebral cortex and the amygdala in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 53:161–165

    Article  PubMed  CAS  Google Scholar 

  • Esiri MM, Hyman BT, Beyreuther K, Masters CL (1997) Ageing and dementia. In: Graham DI, Lantos PL (eds) Greenfield’s neuropathology, 6th edn, vol 2. Arnold, London, pp 153–233

  • Feindel W, Rasmussen T (1991) Temporal lobectomy with amygdalectomy and minimal hippocampal resection: review of 100 cases. Can J Neurol Sci 18(Suppl 4):603–605

    PubMed  CAS  Google Scholar 

  • Ferrante RJ, Kowall NW, Beal MF, Richardson Jr EP, Bird ED, Martin JB (1985) Selective sparing of a class of striatal neurons in Huntington’s disease. Science 230:561–563

    Article  PubMed  CAS  Google Scholar 

  • Fudge JL, Haber SN (2002) Defining the caudal ventral striatum in primates: cellular and histochemical features. J Neurosci 22:10078–10082

    PubMed  CAS  Google Scholar 

  • Garbossa D, Fontanella M, Tomasi S, Ducati A, Vercelli A (2005) Differential distribution of NADPH-diaphorase histochemistry in human cerebral cortex. Brain Res 1034:1–10

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Rill E, Biedermann JA, Chambers T, Skinner RD, Mrak RE, Husain M, Karson CN (1995) Mesopontine neurons in schizophrenia. Neuroscience 66:321–335

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite J, Boulton CL (1995) Nitric oxide signaling in the central nervous system. Annu Rev Physiol 57:683–706

    Article  PubMed  CAS  Google Scholar 

  • Gauriau C, Bernard JF (2002) Pain pathways and parabrachial circuits in the rat. Exp Physiol 87:251–258

    Article  PubMed  Google Scholar 

  • Gerfen CR (2004) Basal ganglia. In: Paxinos G (ed) Thte rat nervous system, 3nd edn. Elsevier Academic Press, Amsterdam, pp 458–508

    Google Scholar 

  • Geula C, Schatz CR, Mesulam M-M (1993) Differential localization of NADPH-diaphorase and Calbindin-D28k within the cholinergic neurons of the basal forebrain, striatum and brainstem in the rat, monkey, baboon and human. Neuroscience 54:461–476

    Article  PubMed  CAS  Google Scholar 

  • Gloor P (1992) Role of the amygdala in temporal lobe epilepsy. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, New York, pp 505–538

    Google Scholar 

  • Gordh T, Sharma HS, Alm P, Westman J (1998) Spinal nerve lesion induces upregulation of neuronal nitric oxide synthase in the spinal cord. An immunohistochemical investigation in the rat. Amino Acids 14:105–112

    Article  PubMed  CAS  Google Scholar 

  • Gotti S, Sica M, Viglietti-Panzica C, Panzica G (2005) Distribution of nitric oxide synthase immunoreactivity in the mouse brain. Microsc Res Tech 68:13–35

    Article  PubMed  CAS  Google Scholar 

  • Guimaraes FS, Beijamini V, Moreira FA, Aguiar DC, de Lucca AC (2005) Role of nitric oxide in brain regions related to defensive reactions. Neurosci Biobehav Rev 29:1313–1322

    Article  PubMed  CAS  Google Scholar 

  • Haldane M, Frangou S (2004) New insights help define the pathophysiology of bipolar affective disorder: neuroimaging and neuropathology findings. Prog Neuropsychopharmacol Biol Psychiatry 28:943–960

    Article  PubMed  Google Scholar 

  • Hall E (1972a) The amygdala of the cat: a Golgi study. Z Zellforsch 134:439–458

    Article  CAS  Google Scholar 

  • Hall E (1972b) Some aspects of the structural organization of the amygdala. In: Eleftheriou BE (ed) The neurobiology of the amygdala. Plenum Press, New York, pp 95–121

    Google Scholar 

  • Heckers S, Mesulam MM (1994) Two types of cholinergic projections to the rat amygdala. Neuroscience 60:383–397

    Article  Google Scholar 

  • Herzog AG, Kemper TL (1980) Amygdaloid changes in ageing and dementia. Arch Neurol 37:625–629

    PubMed  CAS  Google Scholar 

  • Honavar M, Meldrum BS (1997) Epilepsy. In: Graham DI, Lantos PL (eds) Greenfield’s neuropathology, 6th edn, vol 1. Arnold, London, pp 931–971

  • Hope BT, Michael GJ, Knigge KM, Vincent SR (1991) Neuronal NADPH diaphorase is a nitric oxide synthase. Proc Natl Acad Sci USA 88:2811–2814

    Article  PubMed  CAS  Google Scholar 

  • Hudson LP, Munoz DG, Miller L, McLachlan RS, Girvin JP, Blume WT (1993) Ann Neurol 33:622–631

    Article  PubMed  CAS  Google Scholar 

  • Iwase K, Iyama K, Akagi K, Yano S, Fukunaga K, Miyamoto E, Mori M, Takiguchi M (1998) Precise distribution of neuronal nitric oxide synthase mRNA in the rat brain revealed by non-radioisotopic in situ hybridization. Mol Brain Res 53:1–12

    Article  PubMed  CAS  Google Scholar 

  • Jansen-Olesen I, Zhou M, Zinck T, Xu CB, Edvinsson L (2005) Expression of inducible nitric oxide synthase in trigeminal ganglion cells during culture. Basic Clin Pharmacol Toxicol 97:355–363

    Article  PubMed  CAS  Google Scholar 

  • Jellinger KA, Bancher C (1998) Senile dementia with tangles (tangle predominant form of senile dementia). Brain Pathol 8:367–376

    Article  PubMed  CAS  Google Scholar 

  • Johannes S, Reif A, Senitz D, Riederer P, Lauer M (2003) NADPH-diaphorase staining reveals new types of interneurons in human putamen. Brain Res 980:92–99

    Article  PubMed  CAS  Google Scholar 

  • Johnson MD, Ma PM (1993) Localization of NADPH diaphorase activity in monoaminergic neurons of the rat brain. J Comp Neurol 332:391–406

    Article  PubMed  CAS  Google Scholar 

  • Joo KM, Chung YH, Shin CM, Lee YJ, Cha CI (2004) Region-specific alterations of neuronal nitric oxide synthase (nNOS) expression in the amygdala of aged rats. Brain Res 999:231–236

    Article  PubMed  CAS  Google Scholar 

  • Karson CN, Griffin WS, Mrak RE, Husain M, Dawson TM, Snyder SH, Moore NC, Sturner WQ (1996) Nitric oxide synthase (NOS) in schizophrenia: increases in cerebellar vermis. Mol Chem Neuropathol 27:275–284

    Article  PubMed  CAS  Google Scholar 

  • Katsuse O, Iseki E, Kosaka K (2003) Immunohistochemical study of the expression of cytokines and nitric oxide synthases in brains of patients with dementia with Lewy bodies. Neuropathology 23:9–15

    Article  PubMed  Google Scholar 

  • Kawaguchi Y (1993) Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. J Neurosci 13:4908–4923

    PubMed  CAS  Google Scholar 

  • Kawaguchi Y, Wilson CJ, Augood SJ, Emson PC (1995) Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci 19:527–535

    Article  Google Scholar 

  • Kemppainen S, Pitkänen A (2000) Distribution of parvalbumin, calretinin, and calbindin-D28k immunoreactivity in the rat amygdaloid complex and colocalization with γ-aminobutyric acid. J Comp Neurol 426:441–467

    Article  PubMed  CAS  Google Scholar 

  • Kharazia VN, Petrusz P, Usunoff K, Weinberg RJ, Rustioni A (1997) Arginine and NADPH diaphorase in the rat ventoposterior thalamic nucleus. Brain Res 744:151–155

    Article  PubMed  CAS  Google Scholar 

  • Kowall NW, Ferrante RJ, Beal MF, Richardson EP Jr, Sofroniew MV, Cuello AC, Martin JB (1987) Neuropeptide Y, somatostatin, and reduced nicotinamide adenine dinucleotide adenine dinucleOtide phosphate diaüphorase in the human striatum: a combined immunocytochemical and enzyme histochemical study. Neuroscience 20:817–828

    Article  PubMed  CAS  Google Scholar 

  • Kromer Vogt LJ, Hyman BT, Van Hoesen GW, Damasio AR (1990) Pathological alterations in the amygdala in Alzheimer’s disease. Neuroscience 37:377–385

    Article  PubMed  CAS  Google Scholar 

  • Krukoff TL, Khalili P (1997) Stress-induced activation of nitric oxide-producing neurons in the rat brain. J Comp Neurol 377:509–519

    Article  PubMed  CAS  Google Scholar 

  • Lancaster JR (1997) A tutorial on the diffusibility and reactivity of free nitric oxide. Nitric Oxide 1:18–30

    Article  PubMed  CAS  Google Scholar 

  • Lauer M, Johannes S, Fritzen S, Senitz D, Riederer P, Reif A (2005) Morphological abnormalities in nitric-oxide-synthase-positive striatal interneurons of schizophrenic patients. Neuropsychobiology 52:111–117

    Article  PubMed  CAS  Google Scholar 

  • Lazarov NE (2002) Comparative analysis of the chemical neuroanatomy of the mammalian trigeminal ganglion and mesencephalic trigeminal nucleus. Prog Neurobiol 66:19–59

    Article  PubMed  CAS  Google Scholar 

  • Leonard CS, Kerman I, Blaha G, Taveras E, Taylor B (1995) Interdigitation of nitric oxide synthase-, tyrosine hydroxylase-, and serotonin-containing neurons in and around the laterodorsal and pedunculopontine tegmental nuclei of the guinea pig. J Comp Neurol 362:411–432

    Article  PubMed  CAS  Google Scholar 

  • Leontovich TA, Zhukova GP (1963) The specificity of the neuronal structure and topography of the reticular formation in the brain and spinal cord of Carnivora. J Comp Neurol 121:347–379

    Article  PubMed  CAS  Google Scholar 

  • Leontovich TA, Mukhina YK, Fedorov AA (2004) Neurons of the basal ganglia of the human brain (striatum and basolateral amygdala) expressing the enzyme NADPH-d. Neurosci Behav Physiol 34:277–286

    Article  PubMed  CAS  Google Scholar 

  • Li W, Neugebauer V (2004) Differential roles of mGluR1 and mGluR5 in brief and prolonged nociceptive processing in central amygdala neurons. J Neurophysiol 91:13–24

    Article  PubMed  CAS  Google Scholar 

  • Lolova I, Davidoff M (1990) Histo- and immunohistochemical changes in acetylcholinesterase and choline acetyltransferase activities in the amygdaloid complex of aged rats. Acta Histochem 89:173–182

    PubMed  CAS  Google Scholar 

  • Lolova IS, Itzev DE, Lolov SR, Usunoff KG (1999) Age-related changes in the NADPH-diaphorase-positive neuronal perikarya of the dorsolateral column of the periaqueductal gray in the rat. Mech Ageing Dev 108:49–59

    Article  PubMed  CAS  Google Scholar 

  • Lolova IS, Lolov SR, Itzev DE (1996) Changes in NADPH-diaphorase neurons of the rat laterodorsal and pedunculopontine tegmental nuclei in aging. Mech Ageing Dev 90:111–128

    Article  PubMed  CAS  Google Scholar 

  • Lolova IS, Lolov SR, Itzev DE (1997) Aging and the dendritic morphology of the rat laterodorsal and pedunculopontine tegmental nuclei. Mech Ageing Dev 97:193–205

    Article  PubMed  CAS  Google Scholar 

  • Lolova IS, Lolov SR, Itzev DE, Usunoff KG (2000) Age-related changes in the NADPH-diaphorase-positive dendrites in the dorsolateral neuronal column of the periaqueductal gray in rat. Mech Ageing Dev 120:77–86

    Article  PubMed  CAS  Google Scholar 

  • Mai JK, Alsheuer J, Paxinos G (2003) Atlas of the human brain, 2nd edn Elsevier Academic Press, San Diego, CA

    Google Scholar 

  • Mann DMA (1992) The neuropathology of the amygdala in ageing and in dementia. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, New York, pp 575–593

    Google Scholar 

  • Mann DMA, Brown AMT, Prinja D, Jones D, Davies CA (1990) A morphological analysis of senile plaques in the brains of non-demented persons of different ages using silver, immunocytochemical and lectin histochemical staining techniques. Neuropathol Appl Neurobiol 16:17–25

    Article  PubMed  CAS  Google Scholar 

  • Mann DMA, Oliver R, Snowden JS (1993) The topographic distribution of brain atrophy in Huntington’s disease and progressive supranuclear palsy. Acta Neuropathol (Berl) 85:553–559

    CAS  Google Scholar 

  • Mayer DJ, Mao J, Holt J, Price DD (1999) Cellular mechanisms of neuropathic pain, morphine tolerance, and their interactions. Proc Natl Acad Sci USA 96:7731–7736

    Article  PubMed  CAS  Google Scholar 

  • McDonald AJ (1984) Neuronal organization of the lateral and basolateral amygdaloid nuclei in the rat. J Comp Neurol 222:589–606

    Article  PubMed  CAS  Google Scholar 

  • McDonald AJ (1992) Cell types and intrinsic connections of the amygdala. In: Aggleton J (eds) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, New York, pp 67–96

    Google Scholar 

  • McDonald AJ (2003) Is there an amygdala and how far does it extend? An anatomical perspective. Ann NY Acad Sci 985:1–21

    Article  PubMed  Google Scholar 

  • McDonald AJ, Mascagni F (2001) Colocalization of calcium-binding proteins and GABA in neurons of the rat basolateral amygdala. Neuroscience 105:681–693

    Article  PubMed  CAS  Google Scholar 

  • McDonald AJ, Mascagni F (2002) Immunohistochemical characterization of somatostatin containing interneurons in the rat basolateral amygdala. Brain Res 943:237–244

    Article  PubMed  CAS  Google Scholar 

  • McDonald AJ, Payne DR, Mascagni F (1993) Identification of putative nitric oxide producing neurons in the rat amygdala using NADPH-diaphorase histochemistry. Neuroscience 52:97–106

    Article  PubMed  CAS  Google Scholar 

  • Meller ST, Gebhart GF (1993) Nitric oxide (NO) and nociceptive processing in the spinal cord. Pain 52:127–136

    Article  PubMed  CAS  Google Scholar 

  • Menendez L, Insua D, Rois JL, Santamarina G, Suarez ML, Pesini P (2006) The immunohistochemical localization of neuronal nitric oxide synthase in the basal forebrain of the dog. J Chem Neuroanat 31:200–209

    Article  PubMed  CAS  Google Scholar 

  • Mesulam MM, Mufson EJ, Wainer BH, Levey AI (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 10:1185–1201

    Article  PubMed  CAS  Google Scholar 

  • Mitchell IJ, Cooper AJ, Griffiths MR (1999) The selective vulnerability of striatopallidal neurons. Prog Neurobiol 59:691–719

    Article  PubMed  CAS  Google Scholar 

  • Mizukawa K, Vincent SR, McGeer PL, McGeer EG (1989) Distribution of reduced-nicotinamide-adenine-dinucleotide-phosphate-diaphorase-positive cells and fibers in the cat nervous system. J Comp Neurol 279:281–311

    Article  PubMed  CAS  Google Scholar 

  • Mufson EJ, Brandabur MM (1994) Sparing of NADPH-diaphorase striatal neurons in Parkinson’s and Alzheimer’s diseases. Neuroreport 5:705–708

    Article  PubMed  CAS  Google Scholar 

  • Neugebauer V, Li W, Bird GC, Han JS (2004) The amygdala and persistent pain. Neuroscientist 10:221–234

    Article  PubMed  Google Scholar 

  • Nitecka L, Frotscher M (1989) Organization and synaptic interconnections of GABAergic and cholinergic elements in the rat amygdaloid nuclei: single- and double-immnolabeling studies. J Comp Neurol 279:470–488

    Article  PubMed  CAS  Google Scholar 

  • Oerman E, Bidmon HJ, Schleicher A, Mayer B, Schwegler H, Zilles K (1998) The distribution of nitric oxide synthase-I and NADPH-diaphorase containing neurons in the cerebral cortex of different strains of mice and its association with learning and memory. J Hirnforsch 39:65–75

    Google Scholar 

  • Okere CO, Kaba H, Higuchi T (2000) Importance of endogenous nitric oxide synthase in the rat hypothalamus and amygdala in mediating the response to capsaicin. J Comp Neurol 423:670–686

    Article  PubMed  CAS  Google Scholar 

  • Olmos JL, Real MA, Medina L, Guirado S, Davila JC (2005) Distribution of nitric oxide-producing neurons in the developing and adult mouse amygdalar basolateral complex. Brain Res Bull 66:465–469

    Article  PubMed  CAS  Google Scholar 

  • Onstott D, Mayer B, Beitz AJ (1993) Nitric oxide synthase immunoreactive neurons anatomically define a longitudinal dorsolateral column within the midbrain periaqueductal gray of the rat: analysis using laser confocal microscopy. Brain Res 610:317–324

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4nd edn. Academic Press, San Diego, CA

    Google Scholar 

  • Paxinos G, Kus L, Aschwell KWS, Watson C (1999) Chemoarchitectonic atlas of the rat forebrain. Academic Press, San Diego, CA

    Google Scholar 

  • Phelps PE, Houser CR, Vaughn JE (1992) Small cholinergic neurons within fields of cholinergic axons characterize olfactory-related regions of rat telencephalon. Neuroscience 48:121–136

    Article  PubMed  CAS  Google Scholar 

  • Pitkänen A (2000) Connectivity of the rat amygdaloid complex. In: Aggleton JP (eds) The amygdala. A functional analysis, 2nd edn. Oxford University Press, Oxford, pp 31–115

    Google Scholar 

  • Pitkänen A (2004) Denervation and reinnervation of amygdaloid neurons in drug-refractory temporal lobe epilepsy. Epilepsy Curr 4:78–79

    Article  PubMed  Google Scholar 

  • Pitkänen A, Amaral DG (1991) Distribution of reduced nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) cells and fibers in the monkey amygdaloid complex. J Comp Neurol 313:326–348

    Article  PubMed  Google Scholar 

  • Pitkänen A, Tuunanen J, Kalvianen R, Partanen K, Salmenpera T (1998) Amygdala damage in experimental and human temporal lobe epilepsy. Epilepsy Res 32:233–253

    Article  PubMed  Google Scholar 

  • Prast H, Philippu A (2001) Nitric oxide as modulator of neuronal function. Prog Neurobiol 64:51–68

    Article  PubMed  CAS  Google Scholar 

  • Price DD (2002) Central neural mechanisms that interrelate sensory and affective dimensions of pain. Mol Interv 2:392–403

    Article  PubMed  Google Scholar 

  • Price JL, Russchen FT, Amaral DG (1987) The limbic region: II: the amygdaloid complex. In: Björklund A, Hökfelt T, Swanson LW (eds) Handbook of chemical neuroanatomy, vol 5, Integrated systems of the CNS, part I. Elsevier, Amsterdam, pp 289–381

  • Ramon-Moliner E, Nauta WJH (1966) The isodendritic core of the brain stem. J Comp Neurol 126:311–335

    Article  PubMed  CAS  Google Scholar 

  • Roberts GW, Royston MC, Weinberger DR (1997) Scizophrenia. In: Graham DI, Lantos PL (eds) Greenfield’s neuropathology, 6th edn, vol 1. Arnold, London, pp 897–929

  • Rodrigo J, Springall DR, Uttenthal O, Bentura MLAbadia-Molina F, Riveros-Moreno V, Martinez-Murillo R, Polak JM, Monkada S (1994) Localization of nitric oxide synthase in the adult rat brain. Phil Trans R Soc Lond B Biol Sci 345:175–221

    Article  CAS  Google Scholar 

  • Rodrigo J, Fernandez AP, Serrano J, Monzon M, Monleon E, Badiola JJ, Climent S, Martinez-Murillo R, Martinez A (2006) Distribution and expression pattern of the nitrergic system in the cerebellum of the sheep. Neuroscience 139:889–898

    Article  PubMed  CAS  Google Scholar 

  • Rosas HD, Koroshetz WJ, Chen YI, Skeuse C, Vangel M, Cudkowitz ME, Caplan K, Marek K, Seidman LJ, Makris N, Jenkins BG, Goldstein JM (2003) Evidence for more widespread pathology in early HD: an MRI-based morphometric analysis. Neurology 60:1615–1620

    PubMed  CAS  Google Scholar 

  • Salter M, Strijbos PJ, Neale S, Duffy C, Follenfant RL, Garthwaite J (1996) The nitric oxide-cyclic GMP Pathway is required for nociceptive signaling at specific loci within the somatosensory pathway. Neuroscience 73:649–655

    Article  PubMed  CAS  Google Scholar 

  • Satoh K, Arai R, Ikemoto K, Narita M, Nagai T, Ohshima H, Kitahama K (1995) Distribution of nitric oxide synthase in the central nervous system of Macaca fuscata: subcortical regions. Neuroscience 66:685–696

    Article  PubMed  CAS  Google Scholar 

  • Scherer-Singler U, Vincent SR, Kimura H, McGeer EG (1983) Demonstration of a unique population of neurons with NADPH-diaphorase histochemistry. J Neurosci Meth 9:229–234

    Article  CAS  Google Scholar 

  • Schmidt HHHW, Gagne GD, Nakane M, Pollock JS, Miller MF, Murad F (1992) Mapping of neuronal nitric oxide synthase in the rat suggests frequent colocalization with NADPH diaphorase but not soluble guanylyl cyclase and novel paraneural functions for nitrinergic signal transduction. J Histochem Cytochem 40:1439–1456

    PubMed  CAS  Google Scholar 

  • Schmidt ML, Martin JA, Lee VM, Trojanowski JQ (1996) Convergence of Lewy bodies and neurofibrillary tangles in amygdala neurons of Alzheimer’s disease and Lewy body disorders. Acta Neuropathol (Berl) 91:475–481

    Article  CAS  Google Scholar 

  • Shammah-Lagnado SJ, Beltramino CA, McDonald AJ, Miselis RR, Yang M, de Olmos J, Heimer L, Alheid GF (2000) Supracapsular bed nucleus of the stria terminalis contains central and medial extended amygdala elements: evidence from anterograde and retrograde tracing experiments in the rat. J Comp Neurol 422:533–535

    Article  PubMed  CAS  Google Scholar 

  • Shaw PJ, Salt TE (1997) Modulation of sensory and excitatory amino acids responses by nitric oxide donors and glutathione in the ventrobasal thalamus of the rat. Eur J Neurosci 9:1507–1513

    Article  PubMed  CAS  Google Scholar 

  • Shenton ME, Dickey CC, Frumin M, McCarley RW (2001) A review of MRI findings in schizophrenia. Schizophr Res 49:1–52

    Article  PubMed  CAS  Google Scholar 

  • Shibuya-Tayoshi S, Tsuchiya K, Seki Y, Arai T, Kasahara T (2005) Presenile dementia mimicking Pick’s disease: an autopsy case of localized amygdala degeneration with character change and emotional disorder. Neuropathology 25:235–240

    Article  PubMed  Google Scholar 

  • Sims KS, Williams RS (1990) The human amygdaloid complex: a cytologic and histochemical atlas using Nissl, myelin, acetylcholinesterase and nicotinamide adenine dinucleotide phosphate diaphorase staining. Neuroscience 36:449–472

    Article  PubMed  CAS  Google Scholar 

  • Snyder SH (1992) Nitric oxide: first in a new class of neurotransmitter? Science 257:494–496

    Article  PubMed  CAS  Google Scholar 

  • Sobreviela T, Mufson EJ (1995) Reduced nicotinamide adenine dinucleotide phosphate-diaphorase/nitric oxide synthase profiles in the human hippocampal formation and perirhinal cortex. J Comp Neurol 358:440–464

    Article  PubMed  CAS  Google Scholar 

  • Steel JH, Terenghi G, Chung JM, Na HS, Carlton SM, Polak JM (1994) Increased nitric oxide synthase immunoreactivity in rat dorsal root ganglia in a neuropathic pain model. Neurosci Lett 169:81–84

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW (1992) Brain maps: structure of the rat brain. Elsevier, Amsterdam

    Google Scholar 

  • Swanson LW (2003) The amygdala and its place in the cerebral hemisphere. Ann NY Acad. Sci 985:174–184

    Article  PubMed  Google Scholar 

  • Talavera E, Martinez-Lorenzana G, Corkidi G, Leon-Olea M, Condes-Lara M (1997) NADPH-diaphorase-stained neurons after experimental epilepsy in rats. Nitric Oxide 1:484–493

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Ikeda T, Hayashi S, Iijima N. Amaya F, Hisa Y, Ibata Y (1997) Nitrergic neurons in the medial amygdala project to the hypothalamic paraventricular nucleus of the rat. Brain Res 777:13–21

    Article  PubMed  CAS  Google Scholar 

  • Thom M, Griffin B, Sander JW, Scaravilli F (1999) Amygdala sclerosis in sudden and unexpected death in epilepsy. Epilepsy Res 37:53–62

    Article  PubMed  CAS  Google Scholar 

  • Thomas E, Pearse AGE (1964) The solitary active cells: histochemical demonstration of damage-resistant nerve cells with a TPN-diaphorase reaction. Acta Neuropathol (Berl) 3:238–249

    Article  CAS  Google Scholar 

  • Unger JW, Lange W (1992) NADPH-diaphorase-positive cell populations in the human amygdala and temporal cortex: neuroanatomy, peptidergic characteristics and aspects of aging and Alzheimer’s disease. Acta Neuropathol (Berl) 83:636–646

    Article  CAS  Google Scholar 

  • Unger JW, McNeill TH, Lapham LL, Hamill RW (1988) Neuropeptides and neuropathology in the amygdala in Alzheimer’s disease: relationship between somatostatin, neuropeptide Y and subregional distribution of neuritic plaques. Brain Res 452:293–302

    Article  PubMed  CAS  Google Scholar 

  • Unger JW, Lapham LW, McNeill TH, Eskin TA, Hamill RW (1991) The amygdala in Alzheimer’s disease: neuropathology and Alz 50 immunoreactivity. Neurobiol Aging 12:389–399

    Article  PubMed  CAS  Google Scholar 

  • Usunoff KG, Kharazia VN, Valtschanoff JG, Schmidt HHHW, Weinberg RJ (1999) Nitric oxide synthase-containing projections to the ventrobasal thalamus in the rat. Anat Embryol 200:265–281

    Article  PubMed  CAS  Google Scholar 

  • Usunoff KG, Itzev DE, Lolov SR, Wree A (2003) Pedunculopontine tegmental nucleus. Part I: cytoarchitecture, transmitters, development and connections. Biomed Rev 14:95–120

    Google Scholar 

  • Usunoff KG, Popratiloff A, Schmitt O, Wree A (2006a) Functional neuroanatomy of pain. Adv Anat Embryol Cell Biol 184:1–119

    CAS  Google Scholar 

  • Usunoff KG, Itzev DE, Rolfs A, Schmitt O, Wree A (2006b) Brain stem afferent connections of the amygdala in the rat with special references to a projection from the parabigeminal nucleus: a fluorescent retrograde tracing study. Anat Embryol 211:475–496

    Article  CAS  Google Scholar 

  • Valtschanoff JG, Weinberg RJ (2001) Laminar organization of the NMDA receptor complex within the postsynaptic density. J Neurosci 21:1211–1217

    PubMed  CAS  Google Scholar 

  • Valtschanoff JG, Weinberg RJ, Rustioni A (1992) NADPH diaphorase in the spinal cord of rats. J Comp Neurol 321:209–222

    Article  PubMed  CAS  Google Scholar 

  • Valtschanoff JG, Weinberg RJ, Kharazia VN, Nakane M, Schmidt HHHW (1993a) Neurons in rat hippocampus that synthesize nitric oxide. J Comp Neurol 331:111–121

    Article  CAS  Google Scholar 

  • Valtschanoff JG, Weinberg RJ, Kharazia VN, Schmidt HHHW, Nakane M, Rustioni A (1993b) Neurons in rat cerebral cortex that synthesize nitric oxide: NADPH diaphorase histochemistry, NOS immunocytochemistry, and colocalization with GABA. Neurosci Lett 157:157–161

    Article  CAS  Google Scholar 

  • Vereecken TH, Vogels OJ, Nieuwenhuys R (1994) Neuron loss and shrinkage in the amygdala in Alzheimer’s disease. Neurobiol Aging 15:45–54

    Article  PubMed  CAS  Google Scholar 

  • Vincent SR (1986) NADPH-diaphorase histochemistry and neurotransmitter coexistence. In: Panula P, Paivarinta H, Soinila S (eds) Neurohistochemistry: modern methods and applications. Liss, New York, pp 375–396

    Google Scholar 

  • Vincent SR (1994) Nitric oxide: a radical neurotransmitter on the central nervous system. Prog Neurobiol 42:129–160

    Article  PubMed  CAS  Google Scholar 

  • Vincent SR (1995) Localization of nitric oxide neurons in the central nervous system. In: Vinsent SR (ed) Nitric oxide in the nervous system. Academic Press, London, pp 82–102

    Google Scholar 

  • Vincent SR (2000) The ascending reticular activating system—from aminergic neurons to nitric oxide. J Chem Neuroanat 18:23–30

    Article  PubMed  CAS  Google Scholar 

  • Vincent SR, Hope BT (1992) Neurons that say NO. Trends Neurosci 15:108–113

    Article  PubMed  CAS  Google Scholar 

  • Vincent SR, Kimura H (1992) Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience 46:755–784

    Article  PubMed  CAS  Google Scholar 

  • Vincent SR, Johansson O, Hökfelut T, Skirboll L, Elde RP, Terenius L, Kimmel J, Goldstein M (1983a) NADPH-diaphorase: a selective histochemical marker for striatal neurons containing both somatostatin- and avian pancreatic polypeptide (APP)-like immunoreactivities. J Comp Neurol 217:252–263

    Article  CAS  Google Scholar 

  • Vincent SR, Satoh K, Armstrong DM, Fibiger HC (1983b) NADPH-diaphorase: a selective histochemical marker for the cholinergic neurons of the pontine reticular formation. Neurosci Lett 43:31–36

    Article  CAS  Google Scholar 

  • Vizzard MA, Erdman SL, Erickson VL, Stewart RJ, Roppolo JR, De Groat WC (1994) Localization of NADPH diaphorase in the lumbosacral spinal cord and dorsal root ganglia of the cat. J Comp Neurol 339:62–75

    Article  PubMed  CAS  Google Scholar 

  • von Bohlen und Halbach O, Unsicker K (2002) Morphological alterations in the amygdala and hippocampus of mice during ageing. Eur J Neurosci 16:2434–2440

    Article  Google Scholar 

  • Weinberg RJ, Valtschanoff JG, Schmidt HHHW (1996a) The NADPH-diaphorase histochemical stain. In: Feelisch M, Stamler JS (eds) Methods in nitric oxide research. Wiley, London, pp 237–248

    Google Scholar 

  • Weinberg RJ, Valtschanoff JG, Schmidt HHHW (1996b) The NADPH-diaphorase histochemical stain for nitric oxide synthase. In: Monkada S (ed) Biology of nitric oxide. Portland Press, London, pp 149–154

    Google Scholar 

  • Williams JA, Vincent SR, Reiner PB (1997) Nitric oxide production in rat thalamus changes with behavioral state, local depolarization, and brainstem stimulation. J Neurosci 17:420–427

    PubMed  CAS  Google Scholar 

  • Wolf HK, Aliashkevich AF, Blumcke I, Wiestler OD, Zentner J (1997) Neuronal loss and gliosis of the amygdaloid nucleus in temporal lobe epilepsy. A quantitative analysis of 70 surgical specimens. Acta Neuropathol (Berl) 93:606–610

    Article  CAS  Google Scholar 

  • Woolf NJ, Jakobs RW, Butcher LL (1989) The pontomesencephalotegmental cholinergic system does not degenerate in Alzheimer’s disease. Neurosci Lett 96:277–282

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Parent A (2000) Striatal neurons expressing calretinin, parvalbumin or NADPH-diaphorase: a comparative study in the rat, monkey and human. Brain Res 863:182–191

    Article  PubMed  CAS  Google Scholar 

  • Yeo JF (2002) Does nitric oxide play a role in orofacial pain transmission? Ann NY Acad Sci 962:151–160

    Article  PubMed  CAS  Google Scholar 

  • Zech M, Roberts GW, Bogerts B, Crow TJ, Polak JM (1986) Neuropeptides in the amygdala of controls, schizophrenics and patients suffering from Huntington’s chorea: an immunohistochemical study. Acta Neuropathol (Berl) 71:259–266

    Article  CAS  Google Scholar 

  • Zimmermann M (2001) Pathobiology of neuropathic pain. Eur J Pharmacol 429:23–37

    Article  PubMed  CAS  Google Scholar 

  • Zochodne DW, Levy D (2005) Nitric oxide in damage, disease and repair of the peripheral nervous system. Cell Mol Biol (Noisy-le-grand) 51:255–267

    CAS  Google Scholar 

Download references

Acknowledgments

The expert technical assistance of Mrs. Barbara Kuhnke (Rostock), Mrs. Ekaterina A. Zlatanova, Mrs. Snejina S. Ilieva, and Mrs. Elena I. Ivanova (Sofia) is gratefully acknowledged. Grant sponsors: This work was supported by grants of the Federal Ministry of Education and Research (BMBF, 01 ZZ 0108) and of the Ministry of Education, Science and Culture of Mecklenburg-Vorpommern, by a research grant of Pfizer, Karlsruhe/Germany, and National Science Fund of Bulgaria (No L1012/2001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Wree.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usunoff, K.G., Itzev, D.E., Rolfs, A. et al. Nitric oxide synthase-containing neurons in the amygdaloid nuclear complex of the rat. Anat Embryol 211, 721–737 (2006). https://doi.org/10.1007/s00429-006-0134-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-006-0134-9

Keywords

Navigation