Skip to main content
Log in

Object localization with whiskers

  • Review
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Rats use their large facial hairs (whiskers) to detect, localize and identify objects in their proximal three-dimensional (3D) space. Here, we focus on recent evidence of how object location is encoded in the neural sensory pathways of the rat whisker system. Behavioral and neuronal observations have recently converged to the point where object location in 3D appears to be encoded by an efficient orthogonal scheme supported by primary sensory-afferents: each primary-afferent can signal object location by a spatial (labeled-line) code for the vertical axis (along whisker arcs), a temporal code for the horizontal axis (along whisker rows), and an intensity code for the radial axis (from the face out). Neuronal evidence shows that (i) the identities of activated sensory neurons convey information about the vertical coordinate of an object, (ii) the timing of their firing, in relation to other reference signals, conveys information about the horizontal object coordinate, and (iii) the intensity of firing conveys information about the radial object coordinate. Such a triple-coding scheme allows for efficient multiplexing of 3D object location information in the activity of single neurons. Also, this scheme provides redundancy since the same information may be represented in the activity of many neurons. These features of orthogonal coding increase accuracy and reliability. We propose that the multiplexed information is conveyed in parallel to different readout circuits, each decoding a specific spatial variable. Such decoding reduces ambiguity, and simplifies the required decoding algorithms, since different readout circuits can be optimized for a particular variable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abeles M (1982) Local cortical circuits: an electrophysiological study. Springer, Berlin

    Google Scholar 

  • Ahissar E (1998) Temporal-code to rate-code conversion by neuronal phase-locked loops. Neural Comput 10: 597–50

    Article  CAS  PubMed  Google Scholar 

  • Ahissar E, Kleinfeld D (2003) Closed-loop neuronal computations: focus on vibrissa somatosensation in rat. Cereb Cortex 13: 53–2

    Article  PubMed  Google Scholar 

  • Ahissar E, Sosnik R, Bagdasarian K, Haidarliu S (2001) Temporal frequency of whisker movement: II. Laminar organization of cortical representations. J Neurophysiol 86: 354–67

    CAS  Google Scholar 

  • Arabzadeh E, Zorzin E, Diamond ME (2005) Neuronal encoding of texture in the whisker sensory pathway. PLoS Biol 3: e17

    Article  PubMed  CAS  Google Scholar 

  • Barlow HB (1979) Reconstructing the visual image in space and time. Nature 279: 189–90

    Article  CAS  PubMed  Google Scholar 

  • Berg RW, Kleinfeld D (2003) Rhythmic whisking by rat: retraction as well as protraction of the vibrissae is under active muscular control. J Neurophysiol 89: 104–17

    Article  PubMed  Google Scholar 

  • Bermejo R, Harvey M, Gao P, Zeigler HP (1996) Conditioned whisking in the rat. Somatosens Mot Res 13: 225–33

    Article  CAS  PubMed  Google Scholar 

  • Bermejo R, Vyas A, Zeigler HP (2002) Topography of rodent whisking-I: two-dimensional monitoring of whisker movements. Somatosens Mot Res 19: 341–46

    Article  PubMed  Google Scholar 

  • Brecht M, Grinevich V, Jin TE, Margrie T, Osten P (2006) Cellular mechanisms of motor control in the vibrissal system. Pflugers Arch 453: 269–81

    Article  CAS  PubMed  Google Scholar 

  • Carvell GE, Simons DJ (1990) Biometric analyses of vibrissal tactile discrimination in the rat. J Neurosci 10: 2638–648

    CAS  PubMed  Google Scholar 

  • Carvell GE, Simons DJ, Lichtenstein SH, Bryant P (1991) Electromyographic activity of mystacial pad musculature during whisking behavior in the rat. Somatosens Mot Res 8: 159–64

    Article  CAS  PubMed  Google Scholar 

  • Crochet S, Petersen CC (2006) Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nat Neurosci 9: 608–10

    Article  CAS  PubMed  Google Scholar 

  • Derdikman D, Yu C, Haidarliu S, Bagdasarian K, Arieli A, Ahissar E (2006) Layer-specific touch-dependent facilitation and depression in the somatosensory cortex during active whisking. J Neurosci 26: 9538–547

    Article  CAS  PubMed  Google Scholar 

  • Erchova IA, Lebedev MA, Diamond ME (2002) Somatosensory cortical neuronal population activity across states of anaesthesia. Eur J Neurosci 15: 744–52

    Article  PubMed  Google Scholar 

  • Fee MS, Mitra PP, Kleinfeld D (1997) Central versus peripheral determinants of patterned spike activity in rat vibrissa cortex during whisking. J Neurophysiol 78: 1144–149

    CAS  PubMed  Google Scholar 

  • Fundin BT, Bergman E, Ulfhake B (1997) Alterations in mystacial pad innervation in the aged rat. Exp Brain Res 117: 324–40

    Article  CAS  PubMed  Google Scholar 

  • Gibson JM, Welker WI (1983a) Quantitative studies of stimulus coding in first-order vibrissa afferents of rats. 2. Adaptation and coding of stimulus parameters. Somatosens Res 1: 95–17

    Article  CAS  PubMed  Google Scholar 

  • Gibson JM, Welker WI (1983b) Quantitative studies of stimulus coding in first-order vibrissa afferents of rats. 1. Receptive field properties and threshold distributions. Somatosens Res 1: 51–7

    Article  CAS  PubMed  Google Scholar 

  • Grinevich V, Brecht M, Osten P (2005) Monosynaptic pathway from rat vibrissa motor cortex to facial motor neurons revealed by lentivirus-based axonal tracing. J Neurosci 25: 8250–258

    Article  CAS  PubMed  Google Scholar 

  • Hopfield JJ (1982) Neural networks and physical systems with emergent selective computational abilities. Proc Natl Acad Sci USA 79: 2554–558

    Article  CAS  PubMed  Google Scholar 

  • Horev G, Benjamini Y, Sakov A, Golani I (2007) Estimating wall guidance and attraction in mouse free locomotor behavior. Genes Brain Behav 6: 30–1

    Article  CAS  PubMed  Google Scholar 

  • Jones LM, Depireux DA, Simons DJ, Keller A (2004a) Robust temporal coding in the trigeminal system. Science 304: 1986–989

    Article  CAS  PubMed  Google Scholar 

  • Jones LM, Lee S, Trageser JC, Simons DJ, Keller A (2004b) Precise temporal responses in whisker trigeminal neurons. J Neurophysiol 92: 665–68

    Article  PubMed  Google Scholar 

  • Kleinfeld D, Berg RW, O’Connor SM (1999) Anatomical loops and their electrical dynamics in relation to whisking by rat. Somatosens Mot Res 16: 69–8

    Article  CAS  PubMed  Google Scholar 

  • Kleinfeld D, Ahissar E, Diamond ME (2006) Active sensation: insights from the rodent vibrissa sensorimotor system. Curr Opin Neurobiol 16: 435–44

    Article  CAS  PubMed  Google Scholar 

  • Knutsen PM, Derdikman D, Ahissar E (2005) Tracking whisker and head movements in unrestrained behaving rodents. J Neurophysiol 93: 2294–301

    Article  PubMed  Google Scholar 

  • Knutsen PM, Pietr M, Ahissar E (2006) Haptic object localization in the vibrissal system: behavior and performance. J Neurosci 26: 8451–464

    Article  CAS  PubMed  Google Scholar 

  • Krupa DJ, Matell MS, Brisben AJ, Oliveira LM, Nicolelis MA (2001) Behavioral properties of the trigeminal somatosensory system in rats performing whisker-dependent tactile discriminations. J Neurosci 21: 5752–763

    CAS  PubMed  Google Scholar 

  • Lichtenstein SH, Carvell GE, Simons DJ (1990) Responses of rat trigeminal ganglion neurons to movements of vibrissae in different directions. Somatosens Mot Res 7: 47–5

    Article  CAS  PubMed  Google Scholar 

  • McKee SP, Welch L, Taylor DG, Bowne SF (1990) Finding the common bond: stereoacuity and the other hyperacuities. Vision Res. 30: 879–91

    Article  CAS  PubMed  Google Scholar 

  • Mehta SB, Whitmer D, Figueroa R, Williams BA, Kleinfeld D (2007) Active spatial perception in the vibrissa scanning sensorimotor system. PLoS Biol 5: e15

    Article  PubMed  CAS  Google Scholar 

  • Nguyen QT, Kleinfeld D (2005) Positive feedback in a brainstem tactile sensorimotor loop. Neuron 45: 447–57

    Article  CAS  PubMed  Google Scholar 

  • Shoykhet M, Doherty D, Simons DJ (2000) Coding of deflection velocity and amplitude by whisker primary afferent neurons: implications for higher level processing. Somatosens Mot Res 17: 171–80

    Article  CAS  PubMed  Google Scholar 

  • Shuler MG, Krupa DJ, Nicolelis MA (2002) Integration of bilateral whisker stimuli in rats: role of the whisker barrel cortices. Cereb Cortex 12: 86–7

    Article  PubMed  Google Scholar 

  • Solomon JH, Hartmann MJ (2006) Biomechanics: robotic whiskers used to sense features. Nature 443: 525

    Article  CAS  PubMed  Google Scholar 

  • Stuttgen MC, Ruter J, Schwarz C (2006) Two psychophysical channels of whisker deflection in rats align with two neuronal classes of primary afferents. J Neurosci 26: 7933–941

    Article  PubMed  CAS  Google Scholar 

  • Szwed M, Bagdasarian K, Ahissar E (2003) Encoding of vibrissal active touch. Neuron 40: 621–30

    Article  CAS  PubMed  Google Scholar 

  • Szwed M, Bagdasarian K, Blumenfeld B, Barak O, Derdikman D, Ahissar E (2006) Responses of trigeminal ganglion neurons to the radial distance of contact during active vibrissal touch. J Neurophysiol 95: 791–02

    Article  PubMed  Google Scholar 

  • Vincent S (1912) The Function of the Vibrissae in the Behavior of the White Rat. Behav. Monogr. 1: 7–1

    Google Scholar 

  • Westheimer G (1981) Visual hyperacuity. Springer-Verlag, Berlin

    Google Scholar 

  • Whishaw IQ, Kolb R (2005) The behavior of the laboratory rat: a handbook with tests. Oxford University Press, Oxford

    Google Scholar 

  • Yu C, Derdikman D, Haidarliu S, Ahissar E (2006) Parallel thalamic pathways for whisking and touch signals in the rat. PLoS Biol 4: e124

    Article  PubMed  CAS  Google Scholar 

  • Zucker E, Welker WI (1969) Coding of somatic sensory input by vibrissae neurons in the rat’s trigeminal ganglion. Brain Res 12: 138–56

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehud Ahissar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahissar, E., Knutsen, P.M. Object localization with whiskers. Biol Cybern 98, 449–458 (2008). https://doi.org/10.1007/s00422-008-0214-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-008-0214-4

Keywords

Navigation