Skip to main content
Log in

Oscillations and oscillatory behavior in small neural circuits

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

In order to determine the dynamical properties of central pattern generators (CPGs), we have examined the lobster stomatogastric ganglion using the tools of nonlinear dynamics. The lobster pyloric and gastric mill central pattern generators can be analyzed at both the cellular and network levels because they are small, i.e., contain only 25 neurons between them and each neuron and synapse are repeatedly identifiable from animal to animal. We discuss how the biophysical properties of each neuron and synapse in the two circuits act cooperatively to generate two different patterns of sequential activity, how these patterns are altered by neuromodulators and perturbed by noise and sensory inputs. Finally, we show how simplified Hindmarsh–Rose models can be made into analog electronic neurons that mimic the lobster neurons and in addition be incorporated into artificial CPGs with robotic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abarbanel HDI, Huerta R, Rabinovich MI, Rulkov NF, Rowat PF, Selverston AI (1996) Synchronized action of synaptically coupled chaotic neurons: I. Simulations using model neurons. Neural Comput 8:1567–1602

    CAS  Google Scholar 

  • Afraimovich V, Zhigulin VP, Rabinovich MI (2004) On the origin of reproducible sequential activity in neural circuits. Chaos 14:1123–1129

    Article  CAS  PubMed  Google Scholar 

  • Bartos M, Nusbaum MP (1997) Intercircuit control of motor pattern modulation by presynaptic inhibition. J Neurosci 17:2247–2256

    CAS  PubMed  Google Scholar 

  • Bucher D, Thirumalai V, Marder E (2003) Axonal dopamine receptors activate peripheral spike initiation in a stomatogastric neuron. J Neurosci 23:6866–6875

    CAS  PubMed  Google Scholar 

  • Butera RJ, Rinzel J, Smith JC (1999) Models of respiratory rhythm generation in the pre-Botzinger complex. I. Bursting pacemaker neurons. J Neurophysiol 82:382–397

    PubMed  Google Scholar 

  • Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929

    Article  CAS  PubMed  Google Scholar 

  • Calabrese R, Arbas E (1989) Central and peripheral oscillators generating heartbeat in the leech Hirudo medicinalis. In: Jacklet J (ed) Neuronal and cellular oscillators. Marcel Dekker, New York, pp 237–267

    Google Scholar 

  • Cangiano, Grillner S (2005) Mechanisms of rhythm generation in a spinal locomotor network deprived of crossed connections: the lamprey hemicord. J Neurosci 35:923–935

    Article  Google Scholar 

  • Cazalets JR, Nagy F, Moulins M (1990) Suppressive control of the crustacean pyloric network by a pair of identified interneuron. I. Modulation of the motor pattern. J Neurosci 10: 448–457

    CAS  PubMed  Google Scholar 

  • Christie AE, Stein W, Quinlan JE, Beenhakker MP, Marder E, Nusbaum MP (2004) Actions of histaminergic/peptidergic projection neuronon rhythmic motor patterns in the nervous system of the crab Cancer borealis. J Comp Neurol 469:153–169

    Article  CAS  PubMed  Google Scholar 

  • Combes D, Meyrand P, Simmers J (1999) Motor pattern specification by dual descending pathways to a lobster rhythm-generating network. J Neurosci 19:3610–3619

    CAS  PubMed  Google Scholar 

  • Cruse H, Epstein S (1982) Peripheral influences on the movement of the legs in a walking insect Carausius morosus. J Exp Biol 101:161–170

    Google Scholar 

  • Cymbalyuk GS, Gaudry Q, Masino MA, Calabrese RL (2002) Bursting in leech heart interneurons: cell-autonomous and network-based mechanisms. J Neurosci 22:10580–10592

    CAS  PubMed  Google Scholar 

  • Denker M, Szucs A, Pinto RD, Abarbanel HDI, Selverston AI (2005) A network of electronic neural oscillators reproduces the dynamics of the periodically forced pyloric pacemaker group. IEEE Trans Biomed Eng 52:792–799

    Article  PubMed  Google Scholar 

  • Elson RC, Selverston AI (1995) Slow and fast synaptic inhibition evoked by pattern-generating neurons of the gastric mill network in spiny lobsters. J Neurophysiol 74: 1996–2011

    CAS  PubMed  Google Scholar 

  • Elson RC, Selverston AI, Abarbanel HDI, Rabinovich MI (2002) Inhibitory synchronization of bursting in biologicalneurons: dependence on synaptic time constant. J Neurophysiol 88:1166–1176

    PubMed  Google Scholar 

  • Elson RC, Selverston AI, Huerta R, Rulkov NF, Rabinovich MI, Abarbanel HDI (1998) Synchronous behavior of two coupled biological neurons. Phys Rev Lett 81:5692–5695

    Article  CAS  Google Scholar 

  • Foldiak P, Young MP (1995) Sparse coding in the primate cortex. In: Arbib M (ed) Handbook of brain theory and neural networks. MIT Press, Cambridge, pp 895–898

    Google Scholar 

  • Gelperin A (2006) Olfactory computations and network oscillation. J Neurosci 26:1663–1668

    Article  CAS  PubMed  Google Scholar 

  • Getting PA (1989) Emerging principles governing the operation of neuraal networks. Ann Rev Neurosci 12:185–204

    Article  CAS  PubMed  Google Scholar 

  • Gola M, Selverston AI (1981) Ionic requirements for bursting activity in lobster. stomatogastric neurons 145:191–207

    CAS  Google Scholar 

  • Grillner S (2003) The motor infrastructure: From ion channels to neuronal networks. Nat Rev Neurosci 4:573–586

    Article  CAS  PubMed  Google Scholar 

  • Harris-Warrick RM (1988) Chemical modulation of central pattern generators. In: Cohen SR, Grillnere S (eds) Neural control of rhythmic movements. John Wiley & Sons, New York, pp 285–331

    Google Scholar 

  • Heinzel HG, Selverston AI (1988) Gastric mill activity in the lobster. III. Effects of proctolin on the isolated central pattern generator. J Neurophysiol 59:566–585

    CAS  PubMed  Google Scholar 

  • Hempel CM, Vincent P, Adams SR, Tsien RY, Selverston AI (1996) Spatio-temporal dynamics of cAMP signals in an neural circuit. Nature 384:166–169

    Article  CAS  PubMed  Google Scholar 

  • Hopfield JJ, Tank DW (1986) Computing with neural circuits: a model. Science 233:625–633

    Article  CAS  PubMed  Google Scholar 

  • Johnson BR, Kloppenburg P, Harris- Warrick RM (2003) Dopamine modulation of calcium currents in pyloric neurons of the lobster stomatogastric ganglion. J Neurophysiol 90:631–643

    Article  CAS  PubMed  Google Scholar 

  • Jones SR, Mulloney B, Kaper TJ, Kopell N (2003) Coordination of cellular pattern-generating circuits that control limb movementss: the sources of stable differences in intersegmental phases. J Neurosci 23:3457–3468

    CAS  PubMed  Google Scholar 

  • Katz PS, Harris-Warrick RM (1990) Actions of identified neuromodulatory neurons in a simple motor system. TINS 13: 367–373

    CAS  PubMed  Google Scholar 

  • Kiehn O (2006) Locomotor circuits in the mammalian spinal cord. Ann Rev Neurosci 29:279–306

    Article  CAS  PubMed  Google Scholar 

  • Kiehn O, Katz PS (1999) Making circuits dance: neuromodulation of motor systems. In: Katz PS (ed) Beyond neurotransmission. Oxford University Press, Oxford, pp 275–3117

    Google Scholar 

  • Linster C, Cleland TA (2001) How spike synchronizaton among olfactory neurons can contribute to sensory discrimination. J Comput Neurosci 10:187–193

    Article  CAS  PubMed  Google Scholar 

  • Marder E (2000) Motor pattern generation. Curr Opin Neurobiol 10:691–698

    Article  CAS  PubMed  Google Scholar 

  • Maynard DM (1972) Simpler networks. 193:59–72

    CAS  Google Scholar 

  • Maynard DM, Selverston AI (1975) Organization of the stomatogastric ganglion of the spiny lobster. IV. The pyloric system. J Comp Physiol 100:161–182

    Article  Google Scholar 

  • Miller JP, Selverston AI (1982) Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. IV. Network properties of pyloric system. J Neurophysiol 48:1416–1432

    CAS  PubMed  Google Scholar 

  • Mulloney B, Selverston AI (1974) Organization of the stomatogastric ganglion in the spiny lobster. III. Coordination of the two subsets of the gastric system. J Neurophysiol 91:53–78

    Google Scholar 

  • Nadim F, Manor Y, Kopell N, Marder E (1999) Synaptic depression creates a switch that controls the frequency of an oscillatory circuit. Proc Natl Acad Sci USA 96:8206–8211

    Article  CAS  PubMed  Google Scholar 

  • Nagy F, Dickinson PS (1983) Control of a central pattern generator by an identified modulatory interneurone in crustacea. I. Modulation of the pyloric motor output. J Exp Biol 105: 33–58

    CAS  PubMed  Google Scholar 

  • Rabinovich MI, Volkovskii P, Lecanda R, Huerta R, Abarbanel HDI, Laurent G (2001) Dynamical encoding by networks of competing neuron groups: Winnerless competition. Phys Rev Lett 8706:U149

    Google Scholar 

  • Ramirez JM, Tryba AK, Pena F (2004) Pacemaker neurons and neuroonal networks: an integrative view. Curr Opin Neurobiol 14:665–674

    Article  CAS  PubMed  Google Scholar 

  • Richter DW, Spyer KM (2001) Studying rhythmogenesis for breathing: comparison of in vivo and in vitro models. TINS 24: 464–472

    CAS  PubMed  Google Scholar 

  • Roberts A (2001) Early functional organization of spinal neurons in developing lower vertebrates. Brain Res Bull 53: 585–590

    Article  Google Scholar 

  • Salinas E, Sejnowski TJ (2001) Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci 2: 539–550

    Article  CAS  PubMed  Google Scholar 

  • Schnitzler A, Gross J (2005) Normal and pathological oscillatory communication in the brain. Nat Rev Neurosci 6:285–296

    Article  CAS  PubMed  Google Scholar 

  • Selverston AI (2005) A neural infrastructure for rhythmic motor patterns. Cell Mol Neurobiol 25:223–244

    Article  PubMed  Google Scholar 

  • Shepherd G (ed) (2004) The synaptic organization of the brain. Oxford University Press, New York

    Google Scholar 

  • Simmers AJ, Moulins M (1988) Nonlinear interneuronal properties underlie integrative flexibility in a lobster disynaptic sensorimotor pathway. J Neurophysiol 59:757–777

    CAS  PubMed  Google Scholar 

  • Singer W (1990) Search for Coherence. Concepts Neurosci 1:1–26

    Google Scholar 

  • Smith JC, Butera RJ, Koshiya C, Del Negro C, Wilson CG, Johnson SM (2000) Respiratory rhythm generation in neonatal and adult mammals: The hybrid pacemaker-network model. Resp Physiol 122:131–148

    Article  CAS  Google Scholar 

  • Soto-Trevino C, Thoroughman KA, Marder E, Abbott LF (2001) Activity-dependent modification of inhibitory synapses in models of rhythmic neural networks. Nat Neuro 4: 297–303

    Article  CAS  Google Scholar 

  • Stopfer M, Bhagavan S, Smith BH, Laurent G (1997) Impaired odor discrimination on desynchronization of odor-encoding neural assemblies. Nature 390:70–74

    Article  CAS  PubMed  Google Scholar 

  • Wang X-J, Rinzel J (1992) Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Comp 4: 844–897

    Article  Google Scholar 

  • Yuste R, MacLean J, Smith J, Lanser A (2005) The Cortex as a central pattern generator. Nat Rev Neurosci 6:477–483

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen I. Selverston.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selverston, A.I., Ayers, J. Oscillations and oscillatory behavior in small neural circuits. Biol Cybern 95, 537–554 (2006). https://doi.org/10.1007/s00422-006-0125-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0125-1

Keywords

Navigation