Skip to main content
Log in

Altered expression of P2X3 in vagal and spinal afferents following esophagitis in rats

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Purinergic P2X3 receptors are predominantly expressed in small diameter primary afferent neurons and activation of these receptors by adenosine triphosphate is reported to play an important role in nociceptive signaling. The objective of this study was to investigate the expression of P2X3 receptors in spinal and vagal sensory neurons and esophageal tissues following esophagitis in rats. Two groups of rats were used including 7 days fundus-ligated (7D-ligated) esophagitis and sham-operated controls. Esophagitis was produced by ligating the fundus and partial obstruction of pylorus that initiated reflux of gastric contents. The sham-operated rats underwent midline incision without surgical manipulation of the stomach. Expressions of P2X3 receptors in thoracic dorsal root ganglia (DRGs), nodose ganglia (NGs), and esophageal tissues were evaluated by RT–PCR, western blot and immunohistochemistry. Esophageal neurons were identified by retrograde transport of Fast Blue from the esophagus. There were no significant differences in P2X3 mRNA expressions in DRGs (T1–T3) and NGs between 7D-ligated and sham-operated rats. However, there was an upregulation of P2X3 mRNA in DRGs (T6–T12) and in the esophageal muscle. At protein level, P2X3 exhibited significant upregulation both in DRGs and in NGs of rats having chronic esophagitis. Immunohistochemical analysis exhibited a significant increase in P2X3 and TRPV1 co-expression in DRGs and NGs in 7D-ligated rats compared to sham-operated rats. The present findings suggest that chronic esophagitis results in upregulation of P2X3 and its co-localization with TRPV1 receptor in vagal and spinal afferents. Changes in P2X3 expression in vagal and spinal sensory neurons may contribute to esophageal hypersensitivity following acid reflux-induced esophagitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Banerjee B, Medda BK, Lazarova Z, Bansal N, Shaker R, Sengupta JN (2007) Effect of reflux-induced inflammation on transient receptor potential vanilloid one (TRPV1) expression in primary sensory neurons innervating the oesophagus of rats. Neurogastroenterol Motil 19:681–691

    Article  CAS  PubMed  Google Scholar 

  • Bardoni R, Goldstein PA, Lee CJ, Gu JG, MacDermott AB (1997) ATP P2X receptors mediate fast synaptic transmission in the dorsal horn of the rat spinal cord. J Neurosci 17:5297–5304

    CAS  PubMed  Google Scholar 

  • Bradbury EJ, Burnstock G, McMahon SB (1998) The expression of P2X3 purinoreceptors in sensory neurons: effects of axotomy and glial-derived neurotrophic factor. Mol Cell Neurosci 12:256–268

    Article  CAS  PubMed  Google Scholar 

  • Brierley SM, Carter R, Jones W III, Xu L, Robinson DR, Hicks GA, Gebhart GF, Blackshaw LA (2005) Differential chemosensory function and receptor expression of splanchnic and pelvic colonic afferents in mice. J Physiol 567:267–281

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (2006) Purinergic P2 receptors as targets for novel analgesics. Pharmacol Ther 110:433–454

    Article  CAS  PubMed  Google Scholar 

  • Chen CC, Akopian AN, Sivilotti L, Colquhoun D, Burnstock G, Wood JN (1995) A P2X purinoceptor expressed by a subset of sensory neurons. Nature 377:428–431

    Article  CAS  PubMed  Google Scholar 

  • Cockayne DA, Hamilton SG, Zhu QM, Dunn PM, Zhong Y, Novakovic S, Malmberg AB, Cain G, Berson A, Kassotakis L, Hedley L, Lachnit WG, Burnstock G, McMahon SB, Ford AP (2000) Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 407:1011–1015

    Article  CAS  PubMed  Google Scholar 

  • Cook SP, Vulchanova L, Hargreaves KM, Elde R, McCleskey EW (1997) Distinct ATP receptors on pain-sensing and stretch-sensing neurons. Nature 387:505–508

    Article  CAS  PubMed  Google Scholar 

  • Cooke HJ, Wunderlich J, Christofi FL (2003) “The force be with you”: ATP in gut mechanosensory transduction. News Physiol Sci 18:43–49

    CAS  PubMed  Google Scholar 

  • Dang K, Lamb K, Cohen M, Bielefeldt K, Gebhart GF (2008) Cyclophosphamide-induced bladder inflammation sensitizes and enhances P2X receptor function in rat bladder sensory neurons. J Neurophysiol 99:49–59

    Article  CAS  PubMed  Google Scholar 

  • Dunn PM, Zhong Y, Burnstock G (2001) P2X receptors in peripheral neurons. Prog Neurobiol 65:107–134

    Article  CAS  PubMed  Google Scholar 

  • Dütsch M, Eichhorn U, Wörl J, Wank M, Berthoud HR, Neuhuber WL (1998) Vagal and spinal afferent innervation of the rat esophagus: a combined retrograde tracing and immuno cytochemical study with special emphasis on calcium-binding proteins. J Comp Neurol 398(2):289–307

    Article  PubMed  Google Scholar 

  • Evans RJ (1996) The molecular biology of P2X receptors. J Auton Pharmacol 16:309–310

    Article  CAS  PubMed  Google Scholar 

  • Garrison DW, Chandler MJ, Foreman RD (1992) Viscerosomatic convergence onto feline spinal neurons from esophagus, heart and somatic fields: effects of inflammation. Pain 49:373–382

    Article  CAS  PubMed  Google Scholar 

  • Guo A, Vulchanova L, Wang J, Li X, Elde R (1999) Immunocytochemical localization of the vanilloid receptor 1 (VR1): relationship to neuropeptides, the P2X3 purinoceptor and IB4 binding sites. Eur J Neurosci 11:946–958

    Article  CAS  PubMed  Google Scholar 

  • Holzer P (2001) Gastrointestinal afferents as targets of novel drugs for the treatment of functional bowel disorders and visceral pain. Eur J Pharmacol 429:177–193

    Article  CAS  PubMed  Google Scholar 

  • Hu WH, Martin CJ, Talley NJ (2000) Intraesophageal acid perfusion sensitizes the esophagus to mechanical distension: a Barostat study. Am J Gastroenterol 95:2189–2194

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa H, Terayama R, Yamaai T, Yan Z, Sugimoto T (2007) Brain-derived neurotrophic factor-immunoreactive neurons in the rat vagal and glossopharyngeal sensory ganglia; co-expression with other neurochemical substances. Brain Res 1155:93–99

    Article  CAS  PubMed  Google Scholar 

  • Jahnel R, Dreger M, Gillen C, Bender O, Kurreck J, Hucho F (2001) Biochemical characterization of the vanilloid receptor 1 expressed in a dorsal root ganglia derived cell line. Eur J Biochem 268:5489–5496

    Article  CAS  PubMed  Google Scholar 

  • Khakh BS, Humphrey PP, Surprenant A (1995) Electrophysiological properties of P2X-purinoceptors in rat superior cervical, nodose and guinea-pig coeliac neurones. J Physiol 484(Pt 2):385–395

    CAS  PubMed  Google Scholar 

  • Kirkup AJ, Brunsden AM, Grundy D (2001) Receptors and transmission in the brain-gut axis: potential for novel therapies. I. Receptors on visceral afferents. I. Receptors on visceral afferents. Am J Physiol Gastrointest Liver Physiol 280:G787–G794

    CAS  PubMed  Google Scholar 

  • Kress M, Guenther S (1999) Role of [Ca2 +]i in the ATP-induced heat sensitization process of rat nociceptive neurons. J Neurophysiol 81:2612–2619

    CAS  PubMed  Google Scholar 

  • Kwong K, Kollarik M, Nassenstein C, Ru F, Undem BJ (2008) P2X2 receptors differentiate placodal vs. neural crest C-fiber phenotypes innervating guinea pig lungs and esophagus. Am J Physiol Lung Cell Mol Physiol 295:L858–L865

    Article  CAS  PubMed  Google Scholar 

  • Lewandowski NM, Small SA (2005) Brain microarray: finding needles in molecular haystacks. J Neurosci 25:10341–10346

    Article  CAS  PubMed  Google Scholar 

  • Medda BK, Sengupta JN, Lang IM, Shaker R (2005) Response properties of the brainstem neurons of the cat following intra-esophageal acid-pepsin infusion. Neuroscience 135:1285–1294

    Article  CAS  PubMed  Google Scholar 

  • Mehta AJ, De Caestecker JS, Camm AJ, Northfield TC (1995) Sensitization to painful distention and abnormal sensory perception in the esophagus. Gastroenterology 108:311–319

    Article  CAS  PubMed  Google Scholar 

  • Nazif O, Teichman JM, Gebhart GF (2007) Neural upregulation in interstitial cystitis. Urology 69:24–33

    Article  PubMed  Google Scholar 

  • Novakovic SD, Kassotakis LC, Oglesby IB, Smith JA, Eglen RM, Ford AP, Hunter JC (1999) Immunocytochemical localization of P2X3 purinoceptors in sensory neurons in naive rats and following neuropathic injury. Pain 80:273–282

    Article  CAS  PubMed  Google Scholar 

  • Omura N, Kashiwagi H, Chen G, Suzuki Y, Yano F, Aoki T (1999) Establishment of surgically induced chronic acid reflux esophagitis in rats. Scand J Gastroenterol 34:948–953

    Article  CAS  PubMed  Google Scholar 

  • Page AJ, O’Donnell TA, Blackshaw LA (2000) P2X purinoceptor-induced sensitization of ferret vagal mechanoreceptors in oesophageal inflammation. J Physiol 523(Pt 2):403–411

    Article  CAS  PubMed  Google Scholar 

  • Peghini PL, Johnston BT, Leite LP, Castell DO (1996) Mucosal acid exposure sensitizes a subset of normal subjects to intra-oesophageal balloon distension. Eur J Gastroenterol Hepatol 8:979–983

    Article  CAS  PubMed  Google Scholar 

  • Robinson DR, McNaughton PA, Evans ML, Hicks GA (2004) Characterization of the primary spinal afferent innervation of the mouse colon using retrograde labelling. Neurogastroenterol Motil 16:113–124

    Article  CAS  PubMed  Google Scholar 

  • Rong W, Burnstock G (2004) Activation of ureter nociceptors by exogenous and endogenous ATP in guinea pig. Neuropharmacology 47:1093–1101

    Article  CAS  PubMed  Google Scholar 

  • Rong W, Spyer KM, Burnstock G (2002) Activation and sensitisation of low and high threshold afferent fibres mediated by P2X receptors in the mouse urinary bladder. J Physiol 541:591–600

    Article  CAS  PubMed  Google Scholar 

  • Sarkar S, Aziz Q, Woolf CJ, Hobson AR, Thompson DG (2000) Contribution of central sensitisation to the development of non-cardiac chest pain. Lancet 356:1154–1159

    Article  CAS  PubMed  Google Scholar 

  • Sawynok J (1998) Adenosine receptor activation and nociception. Eur J Pharmacol 347:1–11

    Article  CAS  PubMed  Google Scholar 

  • Sawynok J, Reid A (1997) Peripheral adenosine 5′-triphosphate enhances nociception in the formalin test via activation of a purinergic p2X receptor. Eur J Pharmacol 330:115–121

    Article  CAS  PubMed  Google Scholar 

  • Simonetti M, Fabbro A, D’Arco M, Zweyer M, Nistri A, Giniatullin R, Fabbretti E (2006) Comparison of P2X and TRPV1 receptors in ganglia or primary culture of trigeminal neurons and their modulation by NGF or serotonin. Mol Pain 2:11

    Article  PubMed  Google Scholar 

  • Studeny S, Torabi A, Vizzard MA (2005) P2X2 and P2X3 receptor expression in postnatal and adult rat urinary bladder and lumbosacral spinal cord. Am J Physiol Regul Integr Comp Physiol 289:R1155–R1168

    CAS  PubMed  Google Scholar 

  • Sun Y, Chai TC (2004) Up-regulation of P2X3 receptor during stretch of bladder urothelial cells from patients with interstitial cystitis. J Urol 171:448–452

    Article  CAS  PubMed  Google Scholar 

  • Tempest HV, Dixon AK, Turner WH, Elneil S, Sellers LA, Ferguson DR (2004) P2X and P2X receptor expression in human bladder urothelium and changes in interstitial cystitis. BJU Int 93:1344–1348

    Article  CAS  PubMed  Google Scholar 

  • Vulchanova L, Riedl MS, Shuster SJ, Buell G, Surprenant A, North RA, Elde R (1997) Immunohistochemical study of the P2X2 and P2X3 receptor subunits in rat and monkey sensory neurons and their central terminals. Neuropharmacology 36:1229–1242

    Article  CAS  PubMed  Google Scholar 

  • Vulchanova L, Riedl MS, Shuster SJ, Stone LS, Hargreaves KM, Buell G, Surprenant A, North RA, Elde R (1998) P2X3 is expressed by DRG neurons that terminate in inner lamina II. Eur J Neurosci 10:3470–3478

    Article  CAS  PubMed  Google Scholar 

  • Wynn G, Rong W, Xiang Z, Burnstock G (2003) Purinergic mechanisms contribute to mechanosensory transduction in the rat colorectum. Gastroenterology 125:1398–1409

    Article  CAS  PubMed  Google Scholar 

  • Wynn G, Ma B, Ruan HZ, Burnstock G (2004) Purinergic component of mechanosensory transduction is increased in a rat model of colitis. Am J Physiol Gastrointest Liver Physiol 287:G647–G657

    Article  CAS  PubMed  Google Scholar 

  • Xiang Z, Burnstock G (2004) Development of nerves expressing P2X3 receptors in the myenteric plexus of rat stomach. Histochem Cell Biol 122:111–119

    Article  CAS  PubMed  Google Scholar 

  • Xiang Z, Bo X, Burnstock G (1998) Localization of ATP-gated P2X receptor immunoreactivity in rat sensory and sympathetic ganglia. Neurosci Lett 256:105–108

    Article  CAS  PubMed  Google Scholar 

  • Yiangou Y, Facer P, Birch R, Sangameswaran L, Eglen R, Anand P (2000) P2X3 receptor in injured human sensory neurons. Neuroreport 11:993–996

    Article  CAS  PubMed  Google Scholar 

  • Yiangou Y, Facer P, Baecker PA, Ford AP, Knowles CH, Chan CL, Williams NS, Anand P (2001) ATP-gated ion channel P2X(3) is increased in human inflammatory bowel disease. Neurogastroenterol Motil 13:365–369

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study has been supported by NIH RO1 DK062312-01 awarded to Jyoti N. Sengupta and in part by NIH Grant 5R01 DK025731 awarded to Reza Shaker.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banani Banerjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, B., Medda, B.K., Schmidt, J. et al. Altered expression of P2X3 in vagal and spinal afferents following esophagitis in rats. Histochem Cell Biol 132, 585–597 (2009). https://doi.org/10.1007/s00418-009-0639-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-009-0639-4

Keywords

Navigation