Skip to main content
Log in

Disruption of masking by hypothalamic lesions in Syrian hamsters

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Negative masking of locomotor activity by light in nocturnal rodents is mediated by a non-image-forming irradiance-detection system in the retina. Structures receiving input from this system potentially contribute to the masking response. The suprachiasmatic nucleus (SCN) regulates locomotor activity and receives dense innervation from the irradiance-detection system via the retinohypothalamic tract, but its role in masking is unclear. We studied masking in adult Syrian hamsters (Mesocricetus auratus) with electrolytic lesions directed at the SCN. Hamsters were exposed to a 3.5:3.5 ultradian light/dark cycle and their wheel-running activity was monitored. Intact hamsters showed robust masking, expressing less than 20% of their activity in the light even though light and dark occurred equally during their active times. In contrast, hamsters with lesions showed, on average, as much activity in the light as in the dark. Tracing of retinal projections using cholera toxin β subunit showed that the lesions damaged retinal projections to the SCN and to the adjacent subparaventricular zone. Retinal innervation outside the hypothalamus was not obviously affected by the lesions. Our results indicate that retinohypothalamic projections, and the targets of these projections, to the SCN and/or adjacent hypothalamic areas play an important role in masking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1a–f
Fig. 2a–f
Fig. 3a–f
Fig. 4
Fig. 5a–f
Fig. 6a–f
Fig. 7a–f

Similar content being viewed by others

Abbreviations

CTB:

Cholera toxin β subunit

CTB-ir:

CTB immunoreactivity

DD:

Constant darkness

DLG:

Dorsal lateral geniculate

IGL:

Intergeniculate leaflet

LD:

Light/dark

RHT:

Retinohypothalamic tract

SCN:

Suprachiasmatic nucleus

SPZ:

Subparaventricular zone

VLG:

Ventral lateral geniculate

References

  • Belenky MA, Smeraski CA, Provencio I, Sollars PJ, Pickard GE (2003) Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses. J Comp Neurol 460:380–393

    Article  PubMed  Google Scholar 

  • Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–1073

    Article  CAS  PubMed  Google Scholar 

  • Cajochen C, Zeitzer JM, Czeisler CA, Dijk DJ (2000) Dose-response relationship for light intensity and ocular and electroencephalographic correlates of human alertness. Behav Brain Res 115:75–83

    Article  CAS  PubMed  Google Scholar 

  • Clarke RJ, Ikeda H (1985) Luminance and darkness detectors in the olivary and posterior pretectal nuclei and their relationship to the pupillary light reflex in the rat. I. Studies with steady luminance levels. Exp Brain Res 57:224–232

    Article  CAS  PubMed  Google Scholar 

  • de la Iglesia HO, Schwartz WJ (2002) A subpopulation of efferent neurons in the mouse suprachiasmatic nucleus is also light responsive. Neuroreport 13:857–860

    Article  PubMed  Google Scholar 

  • Edelstein K, Mrosovsky N (2001) Behavioral responses to light in mice with dorsal lateral geniculate lesions. Brain Res 918:107–112

    Article  CAS  PubMed  Google Scholar 

  • Gooley JJ, Lu J, Fischer D, Saper CB (2003) A broad role for melanopsin in nonvisual photoreception. J Neurosci 23:7093–7106

    CAS  PubMed  Google Scholar 

  • Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1070

    Article  CAS  PubMed  Google Scholar 

  • Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW, Lem J, Biel M, Hofmann F, Foster RG, Yau KW (2003) Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424:75–81

    Article  Google Scholar 

  • Johnson RF, Moore RY, Morin LP (1988a) Loss of entrainment and anatomical plasticity after lesions of the hamster retinohypothalamic tract. Brain Res 460:297–313

    Article  CAS  PubMed  Google Scholar 

  • Johnson RF, Morin LP, Moore RY (1988b) Retinohypothalamic projections in the hamster and rat demonstrated using cholera toxin. Brain Res 462:301–312

    Article  CAS  PubMed  Google Scholar 

  • Kramer A, Yang FC, Snodgrass P, Li X, Scammell TE, Davis FC, Weitz CJ (2001) Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science 294:2511–2515

    Article  CAS  PubMed  Google Scholar 

  • Retinal input to the sleep-active ventrolateral preoptic nucleus in the rat. Neuroscience 93:209-214

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Zhang YH, Chou TC, Gaus SE, Elmquist JK, Shiromani P, Saper CB (2001) Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleep-wake cycle and temperature regulation. J Neurosci 21:4864–4874

    CAS  PubMed  Google Scholar 

  • Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau KW (2003) Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299:245–247

    Article  CAS  PubMed  Google Scholar 

  • Miller AM, Obermeyer WH, Behan M, Benca RM (1998) The superior colliculus-pretectum mediates the direct effects of light on sleep. Proc Natl Acad Sci USA 95:8957–8962

    Article  CAS  PubMed  Google Scholar 

  • Miller AM, Miller RB, Obermeyer WH, Behan M, Benca RM (1999) The pretectum mediates rapid eye movement sleep regulation by light. Behav Neurosci 113:755–765

    Article  CAS  PubMed  Google Scholar 

  • Moore RY, Danchenko RL (2002) Paraventricular-subparaventricular hypothalamic lesions selectively affect circadian function. Chronobiol Int 19:345–360

    Article  PubMed  Google Scholar 

  • Morin LP, Pace L (2002) The intergeniculate leaflet, but not the visual midbrain, mediates hamster circadian rhythm response to constant light. J Biol Rhythms 17:217–226

    Article  CAS  PubMed  Google Scholar 

  • Morin LP, Blanchard JH, Provencio I (2003) Retinal ganglion cell projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet, and visual midbrain: bifurcation and melanopsin immunoreactivity. J Comp Neurol 465:401–416

    Article  PubMed  Google Scholar 

  • Mrosovsky N (1999) Masking: history, definitions, and measurement. Chronobiol Int 16:415–429

    CAS  PubMed  Google Scholar 

  • Mrosovsky N, Hattar S (2003) Impaired masking responses to light in melanopsin-knockout mice. Chronobiol Int 20:989–999

    Article  CAS  PubMed  Google Scholar 

  • Mrosovsky N, Foster RG, Salmon PA (1999) Thresholds for masking responses to light in three strains of retinally degenerate mice. J Comp Physiol A 184:423–428

    Article  CAS  PubMed  Google Scholar 

  • Mrosovsky N, Lucas RJ, Foster RG (2001) Persistence of masking responses to light in mice lacking rods and cones. J Biol Rhythms 16:585–588

    Article  CAS  PubMed  Google Scholar 

  • Panda S, Provencio I, Tu DC, Pires SS, Rollag MD, Castrucci AM, Pletcher MT, Sato TK, Wiltshire T, Andahazy M, Kay SA, Van Gelder RN, Hogenesch JB (2003) Melanopsin is required for non-image-forming photic responses in blind mice. Science 301:525–527

    Article  CAS  PubMed  Google Scholar 

  • Pickard GE, Ralph MR, Menaker M (1987) The intergeniculate leaflet partially mediates effects of light on circadian rhythms. J Biol Rhythms 2:35–56

    CAS  PubMed  Google Scholar 

  • Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247:975–978

    CAS  PubMed  Google Scholar 

  • Redlin U, Mrosovsky N (1999a) Masking of locomotor activity in hamsters. J Comp Physiol A 184:429–437

    Article  CAS  PubMed  Google Scholar 

  • Redlin U, Mrosovsky N (1999b) Masking by light in hamsters with SCN lesions. J Comp Physiol A 184:439–448

    Article  CAS  PubMed  Google Scholar 

  • Redlin U, Vrang N, Mrosovsky N (1999) Enhanced masking response to light in hamsters with IGL lesions. J Comp Physiol A 184:449–456

    Article  CAS  PubMed  Google Scholar 

  • Redlin U, Cooper HM, Mrosovsky N (2003) Increased masking response to light after ablation of the visual cortex in mice. Brain Res 965:1–8

    Article  CAS  PubMed  Google Scholar 

  • Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941

    Article  CAS  PubMed  Google Scholar 

  • Rusak B (1977) The role of the suprachiasmatic nuclei in the generation of circadian rhythms in the golden hamster, Mesocricetus auratus. J Comp Physiol A 118:145–164

    Google Scholar 

  • Schwartz WJ, Zimmerman P (1991) Lesions of the suprachiasmatic nucleus disrupt circadian locomotor rhythms in the mouse. Physiol Behav 49:1283–1287

    Google Scholar 

  • Sokal RR, Rolf FJ (1995) Biometry, 3rd edn. W. H. Freeman and Company, New York

    Google Scholar 

  • Watts AG, Swanson LW (1987) Efferent projections of the suprachiasmatic nucleus: Ii. Studies using retrograde transport of flourescent dyes and simultaneous peptide immunohistochemistry in the rat. J Comp Neurol 258:230–252

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Special thanks to Dr. Jun Lu for advice on the use of CTB and to Christina Giuliano for technical help. Supported by NIH grants HD18686 and MH068796 to FCD. The experiments reported here comply with the “Principles of Animal Care”, publication no. 86–23, revised 1985 of the National Institute of Health, and with Northeastern University’s Institutional Animal Care and Use Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred C. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Gilbert, J. & Davis, F.C. Disruption of masking by hypothalamic lesions in Syrian hamsters. J Comp Physiol A 191, 23–30 (2005). https://doi.org/10.1007/s00359-004-0569-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-004-0569-5

Keywords

Navigation