Skip to main content
Log in

Can two streams of auditory information be processed simultaneously? Evidence from the gleaning bat Antrozous pallidus

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

A tenet of auditory scene analysis is that we can fully process only one stream of auditory information at a time. We tested this assumption in a gleaning bat, the pallid bat (Antrozous pallidus) because this bat uses echolocation for general orientation, and relies heavily on prey-generated sounds to detect and locate its prey. It may therefore encounter situations in which the echolocation and passive listening streams temporally overlap. Pallid bats were trained to a dual task in which they had to negotiate a wire array, using echolocation, and land on one of 15 speakers emitting a brief noise burst in order to obtain a food reward. They were forced to process both streams within a narrow 300 to 500 ms time window by having the noise burst triggered by the bats’ initial echolocation pulses as it approached the wire array. Relative to single task controls, echolocation and passive sound localization performance was slightly, but significantly, degraded. The bats also increased echolocation interpulse intervals during the dual task, as though attempting to reduce temporal overlap between the signals. These results suggest that the bats, like humans, have difficulty in processing more than one stream of information at a time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson EM, Racey PA (1991) Feeding behavior of captive brown long-eared bats, Plecotus auritus. Anim Behav 42:489–493

    Google Scholar 

  • Arlettaz R, Jones G, Racey PA (2001) Effect of acoustic clutter on prey detection by bats. Nature 414:742–745

    CAS  PubMed  Google Scholar 

  • Barclay RMR, Fenton MB, Tuttle MD, Ryan MJ (1981) Echolocation calls produced by Trachops cirrhosus (Chiroptera: Phyllostomatidae) while hunting for frogs. Can J Zool 59:750–753

    Google Scholar 

  • Bell GP (1982) Behavioral and ecological aspects of gleaning by a desert insectivorous bat, Antrozous pallidus (Chiroptera: Vespertilionidae). Behav Ecol Sociobiol 10:217–223

    Google Scholar 

  • Bell GP, Fenton MB (1986) Visual acuity, sensitivity and binocularity in a gleaning insectivorous bat, Macrotus californicus (Chiroptera: Phyllostomidae). Anim Behav 34:409–414

    Google Scholar 

  • Bregman AS (1990) Auditory scene analysis. MIT Press, Cambridge, MA

  • Brown P (1976) Vocal communication in the pallid bat, Antrozous pallidus. Z. Tierpsychol 41:34–54

    CAS  Google Scholar 

  • Coles RB, Guppy A (1986) Biophysical aspects of directional hearing in the Tammar wallaby, Macropus eugenii. J Exp Biol 121:371–394

    Google Scholar 

  • Coles RB, Guppy A, Anderson ME, Schlegel P (1989) Frequency sensitivity and directional hearing in the gleaning bat, Plecotus auritus (Linnaeus) 1758. J Comp Physiol A 165:269–280

    CAS  PubMed  Google Scholar 

  • Curtis WE (1952) Quantitative studies of echolocation in bats (Mytois l. lucifugus), studies of vision in bats (Myotis l. lucifugus and Eptesicus f. fuscus) and quantitative studies of vision in owls (Tyto alba practincola). PhD Thesis, Cornell University, Ithaca, NY

  • Duncan J (1998) Converging levels of analysis in the cognitive neuroscience of visual attention. Philos Trans R Soc Lond Ser B 1307–1317

  • Duncan J, Martens S, Ward R (1997) Restricted attentional capacity within but not between sensory modalities. Nature 387:808–810

    CAS  PubMed  Google Scholar 

  • Faure PA, Barclay RMR (1994) Substrate-gleaning versus aerial-hawking: plasticity in the foraging and echolocation behavior of the long-eared bat, Myotis evotis. J Comp Physiol A 174:651–660

    CAS  PubMed  Google Scholar 

  • Faure PA, Fullard JH, Dawson JW (1993) The gleaning attacks of the northern long-eared bat, Myotis septentrionalis are relatively inaudible to moths. J Exp Biol 178:173–189

    CAS  PubMed  Google Scholar 

  • Fay RR (1998) Auditory stream segregation in goldfish (Carassius auratus). Hear Res 120:69–75

    Article  CAS  PubMed  Google Scholar 

  • Fay RR (2000) Spectral contrasts underlying auditory stream segregation in goldfish (Carassius auratus). JARO 1:120–128

    CAS  PubMed  Google Scholar 

  • Fiedler J (1979) Prey catching with and without echolocation in the Indian false vampire (Megaderma lyra). Behav Ecol Sociobiol 6:155–160

    Google Scholar 

  • Fuzessery ZM (1994) Response selectivity for multiple dimensions of frequency sweeps in the pallid bat inferior colliculus. J Neurophysiol 72:1061–1079

    CAS  PubMed  Google Scholar 

  • Fuzessery ZM (1996) Monaural and binaural spectral cues created by the external ears of the pallid bat. Hear Res 95:1–17

    Article  CAS  PubMed  Google Scholar 

  • Fuzessery ZM, Hall JC (1996) The role of GABA in shaping frequency tuning and selectivity for FM sweep direction in the inferior colliculus. J Neurophysiol 76:1059–1073

    CAS  PubMed  Google Scholar 

  • Fuzessery ZM, Buttenhoff P, Andrews B, Kennedy JM (1993) Passive sound localization of prey by the pallid bat (Antrozous p. pallidus). J Comp Physiol 171:767–777

    CAS  PubMed  Google Scholar 

  • Giard M, Fort A, Mouchetant-Rostaing Y, Pernier J (2000) Neurophysiological mechanisms of auditory selective attention in humans. Front Biosci 5:84–94

    Google Scholar 

  • Grant JDA (1991) Prey location by two Australian long-eared bats, Nyctophilus gouldi and N. geoffroyi. Aust J Zool 39:45–56

    Google Scholar 

  • Griffin DR (1958) Listening in the dark. Yale University Press, New Haven

  • Griffin DR, Novick A (1955) Acoustic orientation of neotropical bats. J Exp Zool 130:251–300

    Google Scholar 

  • Guppy A, Coles RB (1988) Acoustical and neural aspects of hearing in the Australian gleaning bats, Macroderma gigas and Nyctophilus goudli. J Comp Physiol A 162:653–668

    CAS  PubMed  Google Scholar 

  • Gustafson Y, Schnitzler HU (1979) Echolocation and obstacle avoidance in the hipposiderid bat Asellia tridens. J Comp Physiol 131:161–167

    Google Scholar 

  • Heffner RS, Koay G, Heffner HE (2001) Sound localization in a new-world frugivorous bat, Artibeus jamaicensis: acuity, use of binaural cues, and relationship to vision. J Acoust Soc Am 109:412–421

    Article  CAS  PubMed  Google Scholar 

  • Hopfinger JB, Buonocore MH, Mangun GR (2000) The neural mechanisms of top-down attentional control. Nat Neurosci 3:284–291

    CAS  PubMed  Google Scholar 

  • Hulse SH, MacDougall-Shackleton SA, Wisniewski AB (1997) Auditory scene analysis by songbirds: stream segregation of birdsong by European starlings (Sturnus vulgaris). J Comp Psychol 111:3–13

    Article  CAS  PubMed  Google Scholar 

  • Jen HS, Kamada T (1982) Analysis of orientation signals emitted by the CF-FM bat, Pteronotus p. parnellii and the FM bat, Eptesicus fuscus during avoidance of moving and stationary obstacles. J Comp Physiol 148:389–398

    Google Scholar 

  • Johnston DS, Fenton MB (2001) Individual and population-level variability in diets of pallid bats (Antrozous pallidus). J Mammal 82:362–373

    Google Scholar 

  • Joseph JS, Chun MM, Nakayama K (1997) Attentional requirements in a ‘preattentive’ feature search task. Nature 387:805–807

    Article  CAS  PubMed  Google Scholar 

  • Koay G, Kearns D, Heffner HE, Heffner RS (1998) Passive sound-localization ability of the big brown bat (Eptesicus fuscus). Hear Res 119:37–48

    Article  CAS  PubMed  Google Scholar 

  • Konstantinov AI, Sokolov BV, Stosman JMA (1967) Comparative research on bat echolocation sensitivity. DAN SSSR 175:1418

    CAS  Google Scholar 

  • Luck SJ, Ford MA (1998) On the role of selective attention in visual perception. Proc Natl Acad Sci USA 95:825–830

    Article  CAS  PubMed  Google Scholar 

  • MacDougall-Shackleton SA, Hulse SH, Gentner TQ, White W (1998) Auditory scene analysis by European starlings (Sturnus vulgaris): perceptual segregation of tone sequences. J Acoust Soc Am 103:3581–3587

    Article  CAS  PubMed  Google Scholar 

  • Marimuthu G, Neuweiler G (1987) The use of acoustical cues for prey detection by the Indian false vampire bat, Megaderma lyra. J Comp Physiol 160:509–515

    Google Scholar 

  • Marois R, Chun MM, Gore JC (2000) Neural correlates of the attentional blink. Neuron 28:299–308

    CAS  PubMed  Google Scholar 

  • Möhres FP, Neuweiler G (1966) Die Ultraschallorientierung der Großblatt-Fledermäuse (Chiroptera-Megadermatidae). Z Vergl Physiol 53:195–227

    Google Scholar 

  • Neuweiler G (1984) Foraging, echolocation and audition in bats. Naturwissenschaften 71:446–455

    Google Scholar 

  • Neuweiler G (1990) Auditory adaptations for prey capture in echolocating bats. Physiol Rev 70:615–641

    CAS  PubMed  Google Scholar 

  • Norberg UM, Rayner JMV (1987) Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philos Trans R Soc Lond Ser B 316:335–427

    Google Scholar 

  • O’Neill WE (1985) Responses to pure tones and linear FM components of the CF-FM biosonar signal by single units in the inferior colliculus of the mustached bat. J Comp Physiol A 157:797–815

    CAS  PubMed  Google Scholar 

  • Orbist MK, Fenton MB, Eger JL, Schlegel PA (1993) What ears do for bats: a comparative study of pinna sound pressure transformation in Chiroptera. J Exp Biol 180:119–152

    CAS  PubMed  Google Scholar 

  • Orr RT (1954) Natural history of the pallid bat, Antrozous pallidus (Le Conte). Proc Calif Acad Sci 28:165–246

    Google Scholar 

  • Populin LC, Yin TCT (1998) Behavioral studies of sound localization in the cat. J Neurosci 18:2147–2160

    CAS  PubMed  Google Scholar 

  • Razak KA, Fuzessery ZM (2002) Functional organization of the pallid bat auditory cortex: emphasis on binaural organization. J Neurophysiol 87:72–86

    PubMed  Google Scholar 

  • Ryan MJ, Tuttle MD (1987) The role of prey-generated sounds, vision, and echolocation in prey localization by the African bat Cardioderma cor (Megadermatidae). J Comp Physiol A 161:59–66

    Google Scholar 

  • Schmidt S, Hanke S, Pillat J (2000) The role of echolocation in the hunting of terrestrial prey—new evidence for an underestimated strategy in the gleaning bat, Megaderma lyra. J Comp Physiol A 186:975-988

    Article  CAS  PubMed  Google Scholar 

  • Schneider H, Möhres FP (1960) Die Ohrbewegungen der Hufeisenfledermäuse (Chiroptera-Rhinolophidae) und der Mechanismus des Bildhörens. Z Vergl Physiol 44:1–40

    Google Scholar 

  • Schnitzler HU (1968) Die Ultraschall-Ortungslaute der Hufeisen Fledermäuse (Chiroptera-Rhinolophidae) in verschiedenen Orientierungs-situationen. Z Vergl Physiol 57:376–408

    Google Scholar 

  • Schnitzler HU, Henson OWJ (1980) Performance of airborne animal sonar systems. 1. Microchiroptera. In: Busnel RG, Fish JF (eds) Animal sonar systems. Plenum Press, New York, 109–181

  • Simmons JA, Fenton MB, O’Farrell MJ (1979) Echolocation and the pursuit of prey by bats. Science 203:16–21

    CAS  PubMed  Google Scholar 

  • Simmons JA, Stein RA (1980) Acoustic imaging in bat sonar: echolocation signals and the evolution of echolocation. J Comp Physiol A 135:61–84

    Google Scholar 

  • Suga N (1965) Analysis of frequency-modulated sounds by auditory neurons of echolocating bats. J Physiol (Lond) 179:26–53

    Google Scholar 

  • Suga N (1969) Classification of inferior colliculus neurons of bats in terms of responses to pure tones, FM sounds, and noise bursts. J Physiol (Lond) 200:555–574

    Google Scholar 

  • Suthers RA (1967) Comparative echolocation by fishing bats. J Mammal 48:79–87

    CAS  PubMed  Google Scholar 

  • Wisniewski AB, Hulse SH (1997) Auditory scene analysis in European starlings (Sturnus vulgaris): discrimination of song segments, their segregation from multiple and reversed conspecific songs, and evidence for conspecific song categorization. J Comp Psychol 111:337–350

    Article  Google Scholar 

  • Yost WA (1991) Auditory image perception and analysis: the basis of hearing. Hear Res 56:8–18

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are most grateful for the assistance in statistical analyses provided by Ken Gerow and Mark Leary, the software programming by Glen McLelland and Willard Wilson, and editorial comments by Mali Yenisey and Terri Zumsteg. We also appreciate the considerable time and effort contributed by two anonymous reviewers. This research was supported by grants to Z.M.F. from the National Science Foundation (IBN-9828599) and the National Institutes of Health (R01 DC00054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. M. Fuzessery.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barber, J.R., Razak, K.A. & Fuzessery, Z.M. Can two streams of auditory information be processed simultaneously? Evidence from the gleaning bat Antrozous pallidus . J Comp Physiol A 189, 843–855 (2003). https://doi.org/10.1007/s00359-003-0463-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-003-0463-6

Keywords

Navigation