Skip to main content
Log in

Maintaining phase of the crustacean tri-phasic pyloric rhythm

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We construct and analyze a model network of the pyloric rhythm of the crustacean stomatogastric ganglion consisting of an oscillator neuron that inhibits two reciprocally inhibitory follower neurons. We derive analytic expressions that determine the phase of firing of the follower neurons with respect to the oscillator. An important aspect of the model is the inclusion of synapses that exhibit short-term synaptic depression. We show that these type of synapses allow there to be a complicated relationship between the intrinsic properties of the neurons and the synapses between them in determining phase relationships. Our analysis reveals the circumstances and ranges of cycle periods under which these properties work in concert with or independently from one another. In particular, we show that phase maintenance over a range of oscillator periods can be enhanced through the interplay of the two follower neurons if the synapses between these neurons are depressing. Since our model represents the core of the oscillatory pyloric network, the results of our analysis can be compared to experimental data and used to make predictions about the biological network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ambrosio-Mouser C., Nadim F. and Bose A. (2006). The effects of varying the timing of inputs on a neural oscillator. SIAM J. Appl. Dyn. Syst. 5: 108–139

    Article  MATH  MathSciNet  Google Scholar 

  • Anderson W.W. and Barker D.L. (1981). Synaptic mechanisms that generate network oscillations in the absence of discrete postsynaptic potentials. J. Exp. Zool. 216: 187–191

    Article  Google Scholar 

  • Birmingham J.T., Manor Y., Nadim F., Abbott L.F. and Marder E. (1998). An empirical model describing the dynamics of graded synaptic transmission in the lobster pyloric network. In: Bower, J.M. (eds) Computational Neuroscience: Trends in Research, Plenum Press, New York

    Google Scholar 

  • Bose A., Manor Y. and Nadim F. (2004). The activity phase of postsynaptic neurons in a simplified rhythmic network. J. Comput. Neurosci. 17: 245–261

    Article  Google Scholar 

  • Cohen A., Ermentrout G.B., Kiemel T., Kopell N., Sigvardt K. and Williams T. (1992). Modelling of intersegmental coordination in the lamprey central pattern generator for locomotion. TINS 15: 434–438

    Google Scholar 

  • DiCaprio R.A., Jordan G. and Hampton T. (1997). Maintenance of motor pattern phase relationships in the ventilatory system of the crab. J. Exp. Biol. 200: 963–974

    Google Scholar 

  • Dickinson P.S. (2006). Neuromodulation of central pattern generators in invertebrates and vertebrates. Curr. Opin. Neurobiol. 16: 604–614

    Article  Google Scholar 

  • Ermentrout G.B. (1981). n:m phase-locking of weakly coupled oscillators. J. Math. Biol. 12: 327–342

    Article  MATH  MathSciNet  Google Scholar 

  • Ermentrout, G.B.: Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. SIAM (2002)

  • Friesen W.O. and Pearce R.A. (1993). Mechanisms of intersegmental coordination in leech locomotion. Semin. Neurosci. 5: 41–47

    Article  Google Scholar 

  • Grillner, S.: Control of locomotion in bipeds, tetrapods and fish. In: Brooks, V.B. (ed.) Handbook of Physiology, sect. 1, The Nervous system, vol. 2, pp. 1179–1236. Waverly Press, Maryland (1981)

    Google Scholar 

  • Graubard K., Raper J.A. and Hartline D.K. (1983). Graded synaptic transmission between identified spiking neurons. J. Neurophysiol. 50: 508–521

    Google Scholar 

  • Hooper S. (1997). Phase maintenance in the pyloric pattern of the lobster (Panulirus interruptus) stomatogastric ganglion. J. Comput. Neurosci. 4: 191–205

    Article  MATH  Google Scholar 

  • Hooper S. (1997). The pyloric pattern of the lobster (Panulirus interruptus) stomatogastric ganglion comprises two phase-maintaining subsets. J. Comput. Neurosci. 4: 207–219

    Article  MATH  Google Scholar 

  • Jones S. and Kopell N. (2006). Local network parameters can affect inter-network phase lags in central pattern generators. J. Math. Biol. 52: 115–140

    Article  MATH  MathSciNet  Google Scholar 

  • Mamiya A., Manor Y. and Nadim F. (2003). Short-term dynamics of a mixed chemical and electrical synapse in a rhythmic network. J. Neurosci. 23: 9957–9564

    Google Scholar 

  • Manor Y., Bose A., Booth V. and Nadim F. (2003). Contribution of synaptic depression to phase maintenance in a model rhythmic network. J. Neurophysiol. 90: 3513–3528

    Article  Google Scholar 

  • Marder E. and Calabrese R. (1996). Principles of rhythmic motor pattern generation. Physiol. Rev. 76: 687–717

    Google Scholar 

  • Marder E. (1998). From biophysics to models of network function. Annu. Rev. Neurosci. 21: 25–45

    Article  Google Scholar 

  • Marder E. and Bucher D. (2006). Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu. Rev. Physiol. 69: 291–316

    Article  Google Scholar 

  • Mishchenko E.F. and Rozov N.K. (1980). Differential Equations with Small Parameters and Relaxation Oscillators. Plenum Press, New York

    Google Scholar 

  • Morris C. and Lecar H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35: 193–213

    Article  Google Scholar 

  • Nadim F., Manor Y., Kopell N. and Marder E. (1999). Synaptic depression creates a switch that controls the frequency of an oscillatory circuit. PNAS 96: 8206–8211

    Article  Google Scholar 

  • Nusbaum M.P. and Beenhakker M.P. (2002). A small-systems approach to motor pattern generation. Nature 417: 343–350

    Article  Google Scholar 

  • O’Keefe J. and Recce M.L. (1993). Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3: 317–330

    Article  Google Scholar 

  • Parker D. and Grillner S. (1999). Activity-dependent metaplasticity of inhibitory and excitatory synaptic transmission in the lamprey spinal cord locomotor network. J. Neurosci. 19: 1647–1656

    Google Scholar 

  • Rabbah P. and Nadim F. (2005). Synaptic dynamics do not determine proper phase of activity in a central pattern generator. J. Neurosci. 25: 11269–11278

    Article  Google Scholar 

  • Rabbah P. and Nadim F. (2007). Distinct synaptic dynamics of heterogeneous pacemaker neurons in an oscillatory network. J. Neurophysiol. 97: 2239–2253

    Article  Google Scholar 

  • Sigvardt K.A. (1981). Spinal mechanisms in the control of lamprey swimming. Am. Zool. 29: 19–35

    Google Scholar 

  • Skinner F. and Mulloney B. (1998). Intersegmental coordination of limb movements during locomotion: mathematical models predict circuits that drive swimmeret beating. J. Neurosci. 18: 3831–3842

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitabha Bose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mouser, C., Nadim, F. & Bose, A. Maintaining phase of the crustacean tri-phasic pyloric rhythm. J. Math. Biol. 57, 161–181 (2008). https://doi.org/10.1007/s00285-007-0150-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-007-0150-2

Keywords

Mathematics Subject Classification (2000)

Navigation