Skip to main content
Log in

Gene Duplications and Evolution of Vertebrate Voltage-Gated Sodium Channels

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Voltage-gated sodium channels underlie action potential generation in excitable tissue. To establish the evolutionary mechanisms that shaped the vertebrate sodium channel α-subunit (SCNA) gene family and their encoded Nav1 proteins, we identified all SCNA genes in several teleost species. Molecular cloning revealed that teleosts have eight SCNA genes, compared to ten in another vertebrate lineage, mammals. Prior phylogenetic analyses have indicated that the genomes of both teleosts and tetrapods contain four monophyletic groups of SCNA genes, and that tandem duplications expanded the number of genes in two of the four mammalian groups. However, the number of genes in each group varies between teleosts and tetrapods, suggesting different evolutionary histories in the two vertebrate lineages. Our findings from phylogenetic analysis and chromosomal mapping of Danio rerio genes indicate that tandem duplications are an unlikely mechanism for generation of the extant teleost SCNA genes. Instead, analyses of other closely mapped genes in D. rerio as well as of SCNA genes from several teleost species all support the hypothesis that a whole-genome duplication was involved in expansion of the SCNA gene family in teleosts. Interestingly, despite their different evolutionary histories, mRNA analyses demonstrated a conservation of expression patterns for SCNA orthologues in teleosts and tetrapods, suggesting functional conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig 7

Similar content being viewed by others

References

  • Akopian AN, Sivilotti L, Wood JN (1996) A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 379:257–262

    PubMed  CAS  Google Scholar 

  • Akopian AN, Souslova V, England S, Okuse K, Ogata N, Ure J, Smith A, Kerr BJ, McMahon SB, Boyce S, Hill R, Stanfa LC, Dickenson AH, Wood JN (1999) The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat Neurosci 2:541–548

    PubMed  CAS  Google Scholar 

  • Amaya F, Decosterd I, Samad TA, Plumpton C, Tate S, Mannion RJ, Costigan M, Woolf CJ (2000) Diversity of expression of the sensory neuron-specific TTX-resistant voltage-gated sodium ion channels SNS and SNS2. Mol Cell Neurosci 15:331–342

    PubMed  CAS  Google Scholar 

  • Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL, Westerfield M, Ekker M, Postlethwait JH (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282:1711–1714

    PubMed  CAS  Google Scholar 

  • Ausubel F, Brent R, Kingston R, Moore D, Seidman J, Smith J, Struhl K (1994) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Catterall WA, Goldin AL, Waxman SG. (2005) Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev 57:397–409

    PubMed  CAS  Google Scholar 

  • Crow KD, Stadler PF, Lynch VT, Amemiya C, Wagner GP (2006) The “fish specific” Hox cluster duplication is coincident with the origin of teleosts. Mol Biol Evol 23:121–136

    PubMed  CAS  Google Scholar 

  • de Souza FSJ, Bumaschny VF, Low MJ, Rubinstein M (2005) Subfunctionalization of expression and peptide domains following the ancient duplication of the Proopiomelanocortin gene in teleost fishes. Mol Biol Evol 22:2417–2427

    PubMed  Google Scholar 

  • Dhar Malhotra J, Chen C, Rivolta I, Abriel H, Malhotra R, Mattei LN, Brosius FC, Kass RS, Isom LL (2001) Characterization of sodium channel alpha- and beta-subunits in rat and mouse cardiac myocytes. Circulation 103:1303–1310

    PubMed  CAS  Google Scholar 

  • Dib-Hajj SD, Tyrrell L, Cummins TR, Black JA, Wood PM, Waxman SG (1999a) Two tetrodotoxin-resistant sodium channels in human dorsal root ganglion neurons. FEBS Lett 462:117–120

    CAS  Google Scholar 

  • Dib-Hajj SD, Tyrrell L, Escayg A, Wood PM, Meisler MH, Waxman SG (1999b) Coding sequence, genomic organization, and conserved chromosomal localization of the mouse gene SCN11A encoding the sodium channel NaN. Genomics 59:309–318

    CAS  Google Scholar 

  • Donahue LM, Coates PW, Lee VH, Ippensen DC, Arze SE, Poduslo SE (2000) The cardiac sodium channel mRNA is expressed in the developing and adult rat and human brain. Brain Res 887:335–343

    PubMed  CAS  Google Scholar 

  • Ekker SC, Ungar AR, Greenstein P, von Kessler DP, Porter JA, Moon RT, Beachy PA (1995) Patterning activities of vertebrate hedgehog proteins in the developing eye and brain. Curr Biol 5:944–955

    PubMed  CAS  Google Scholar 

  • Fatt P, Ginsborg BL (1958) The ionic requirements for the production of action potentials in crustacean muscle fibres. J Physiol 142:516–543

    PubMed  CAS  Google Scholar 

  • Fried C, Prohaska SJ, Stadler PF (2003) Independent Hox-cluster duplications in lampreys. J Exp Zool B Mol Dev Evol 299:18–25

    PubMed  Google Scholar 

  • George AL Jr, Iyer GS, Kleinfield R, Kallen RG, Barchi RL (1993) Genomic organization of the human skeletal muscle sodium channel gene. Genomics 15:598–606

    PubMed  CAS  Google Scholar 

  • Goldin AL (2002) Evolution of voltage-gated Na(+) channels. J Exp Biol 205:575–584

    PubMed  CAS  Google Scholar 

  • Goldin AL, Barchi RL, Caldwell JH, Hofmann F, Howe JR, Hunter JC, Kallen RG, Mandel G, Meisler MH, Netter YB, Noda M, Tamkun MM, Waxman SG, Wood JN, Catterall WA (2000) Nomenclature of voltage-gated sodium channels. Neuron 28:365–368

    PubMed  CAS  Google Scholar 

  • Hagiwara S, Kidokoro Y (1971) Na and Ca components of action potential in amphioxus muscle cells. J Physiol 219:217–232

    PubMed  CAS  Google Scholar 

  • Hartmann HA, Colom LV, Sutherland ML, Noebels JL (1999) Selective localization of cardiac SCN5A sodium channels in limbic regions of rat brain. Nat Neurosci 2:593–595

    PubMed  CAS  Google Scholar 

  • Hoegg S, Brinkmann H, Taylor JS, Meyer A (2004) Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol 59:190–203

    PubMed  CAS  Google Scholar 

  • Holland PW, Williams NA (1990) Conservation of engrailed-like homeobox sequences during vertebrate evolution. FEBS Lett 277:250–252

    PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    PubMed  CAS  Google Scholar 

  • Hukriede NA, Joly L, Tsang M, Miles J, Tellis P, Epstein JA, Barbazuk WB, Li FN, Paw B, Postlethwait JH, Hudson TJ, Zon LI, McPherson JD, Chevrette M, Dawid IB, Johnson SL, Ekker M (1999) Radiation hybrid mapping of the zebrafish genome. Proc Natl Acad Sci USA 96:9745–9750

    PubMed  CAS  Google Scholar 

  • Jozefowicz C, McClintock J, Prince V (2003) The fates of zebrafish Hox gene duplicates. J Struct Funct Genomics 3:185–194

    PubMed  CAS  Google Scholar 

  • Krzemien DM, Schaller KL, Levinson SR, Caldwell JH (2000) Immunolocalization of sodium channel isoform NaCh6 in the nervous system. J Comp Neurol 420:70–83

    PubMed  CAS  Google Scholar 

  • Lopreato GF, Lu Y, Southwell A, Atkinson NS, Hillis DM, Wilcox TP, Zakon HH (2001) Evolution and divergence of sodium channel genes in vertebrates. Proc Natl Acad Sci USA 98:7588–7592

    PubMed  CAS  Google Scholar 

  • Lundin LG (1993) Evolution of the vertebrate genome as reflected in paralogous chromosomal regions in man and the house mouse. Genomics 16:1–19

    PubMed  CAS  Google Scholar 

  • Maddison WP, Maddison DR (1992) MacClade version 3: Analysis of phylogeny and character evolution. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Maier SK, Westenbroek RE, Schenkman KA, Feigl EO, Scheuer T, Catterall WA (2002) An unexpected role for brain-type sodium channels in coupling of cell surface depolarization to contraction in the heart. Proc Natl Acad Sci USA 99:4073–4078

    PubMed  CAS  Google Scholar 

  • Meyer A, Schartl M (1999) Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol 11:699–704

    PubMed  CAS  Google Scholar 

  • Novak AE, Taylor AD, Pineda RH, Lasada EL, Wright MA, Ribera AB (2006) Embryonic and larval expression of zebrafish voltage-gated sodium channel alpha-subunit genes. Dev Dyn 235:1962–1973

    PubMed  Google Scholar 

  • Nylander JAA (2004) MrModeltest. Technical report. Evolutionary Biology Centre, Uppsala University, University

    Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer-Verlag, Berlin

    Google Scholar 

  • Piontkivska H, Hughes AL (2003) Evolution of vertebrate voltage-gated ion channel alpha chains by sequential gene duplication. J Mol Evol 56:277–285

    PubMed  CAS  Google Scholar 

  • Plummer NW, Meisler MH (1999) Evolution and diversity of mammalian sodium channel genes. Genomics 57:323–331

    PubMed  CAS  Google Scholar 

  • Plummer NW, Galt J, Jones JM, Burgess DL, Sprunger LK, Kohrman DC, Meisler MH (1998) Exon organization, coding sequence, physical mapping, and polymorphic intragenic markers for the human neuronal sodium channel gene SCN8A. Genomics 54:287–296

    PubMed  CAS  Google Scholar 

  • Prince V (2002) The Hox Paradox: more complex(es) than imagined. Dev Biol 249:1–15

    PubMed  CAS  Google Scholar 

  • Rogart RB, Cribbs LL, Muglia LK, Kephart DD, Kaiser MW (1989) Molecular cloning of a putative tetrodotoxin-resistant rat heart Na+ channel isoform. Proc Natl Acad Sci USA 86:8170–8174

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Sangameswaran L, Delgado SG, Fish LM, Koch BD, Jakeman LB, Stewart GR, Sze P, Hunter JC, Eglen RM, Herman RC (1996) Structure and function of a novel voltage-gated, tetrodotoxin-resistant sodium channel specific to sensory neurons. J Biol Chem 271:5953–5956

    PubMed  CAS  Google Scholar 

  • Schaller KL, Krzemien DM, Yarowsky PJ, Krueger BK, Caldwell JH (1995) A novel, abundant sodium channel expressed in neurons and glia. J Neurosci 15:3231–3242

    PubMed  CAS  Google Scholar 

  • Sidow A (1996) Gen(om)e duplications in the evolution of early vertebrates. Curr Opin Genet Dev 6:715–722

    PubMed  CAS  Google Scholar 

  • Sneddon LU, Braithwaite VA, Gentle MJ (2003) Do fishes have nociceptors? Evidence for the evolution of a vertebrate sensory system. Proc Biol Sci 270:1115–1121

    PubMed  Google Scholar 

  • Souslova VA, Fox M, Wood JN, Akopian AN (1997) Cloning and characterization of a mouse sensory neuron tetrodotoxin-resistant voltage-gated sodium channel gene, Scn10a. Genomics 41:201–209

    PubMed  CAS  Google Scholar 

  • Stadler PF, Fried C, Prohaska SJ, Bailey WJ, Misof BY, Ruddle FH, Wagner GP (2004) Evidence for independent Hox gene duplications in the hagfish lineage: a PCR-based gene inventory of Eptatretus stoutii. Mol Phylogenet Evol 32:686–694

    PubMed  CAS  Google Scholar 

  • Stock DW, Ellies DL, Zhao Z, Ekker M, Ruddle FH, Weiss KM (1996) The evolution of the vertebrate Dlx gene family. Proc Natl Acad Sci USA 93:10858–10863

    PubMed  CAS  Google Scholar 

  • Suzuki N, Kano M (1977) Development of action potential in larval muscle fibers in Drosophila melanogaster. J Cell Physiol 93:383–388

    PubMed  CAS  Google Scholar 

  • Swofford DL (2002) PAUP* 4:40: Phylogenetic analysis using parsimony *and other methods. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  CAS  Google Scholar 

  • Trimmer JS, Cooperman SS, Tomiko SA, Zhou JY, Crean SM, Boyle MB, Kallen RG, Sheng ZH, Barchi RL, Sigworth FJ, Goodman RH, Agnew WS, Mandel G (1989) Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron 3:33–49

    PubMed  CAS  Google Scholar 

  • Tsai CW, Tseng JJ, Lin SC, Chang CY, Wu JL, Horng JF, Tsay HJ (2001) Primary structure and developmental expression of zebrafish sodium channel Na(v)16 during neurogenesis. DNA Cell Biol 20:249–255

    PubMed  CAS  Google Scholar 

  • Tzoumaka E, Tischler AC, Sangameswaran L, Eglen RM, Hunter JC, Novakovic SD (2000) Differential distribution of the tetrodotoxin-sensitive rPN4/NaCh6/Scn8a sodium channel in the nervous system. J Neurosci Res 60:37–44

    PubMed  CAS  Google Scholar 

  • Vandepoele K, De Vos W, Taylor JS, Meyer A, Van de Peer Y (2004) Major events in the genome evolution of vertebrates: Paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proc Natl Acad Sci USA 101:1638–1643

    PubMed  CAS  Google Scholar 

  • Venkatesh B, Lu SQ, Dandona N, See SL, Brenner S, Soong TW (2005) Genetic basis of tetrodotoxin resistance in pufferfishes. Curr Biol 15:2069–2072

    PubMed  CAS  Google Scholar 

  • Wang Q, Li Z, Shen J, Keating MT (1996) Genomic organization of the human SCN5A gene encoding the cardiac sodium channel. Genomics 34:9–16

    PubMed  CAS  Google Scholar 

  • Westerfield M (1995) The zebrafish book: A guide for the laboratory use of zebrafish (Brachydanio rerio). University of Oregon Press, Eugene

    Google Scholar 

  • Wittbrodt J, Meyer A, Schartl A (1998) More genes in fish? BioEssays 20:511–515

    Google Scholar 

  • Zimmer T, Bollensdorff C, Haufe V, Birch-Hirschfeld E, Benndorf K (2002) Mouse heart Na+ channels: primary structure and function of two isoforms and alternatively spliced variants. Am J Physiol Heart Circ Physiol 282:H1007–H1017

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors’ work was supported by NIH grants (NS 38937—A.E.N., A.D.T., and A.B.R.; NS 25513—H.H.Z. and Y.L.; and NSF IBN 0236147—M.C.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angeles B. Ribera.

Additional information

[Reviewing Editor: Dr. Axel Meyer]

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novak, A.E., Jost, M.C., Lu, Y. et al. Gene Duplications and Evolution of Vertebrate Voltage-Gated Sodium Channels. J Mol Evol 63, 208–221 (2006). https://doi.org/10.1007/s00239-005-0287-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-005-0287-9

Keywords

Navigation