Skip to main content

Advertisement

Log in

Activity of primate orbitofrontal and dorsolateral prefrontal neurons: task-related activity during an oculomotor delayed-response task

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The orbitofrontal cortex (OFC) has strong reciprocal connections to the dorsolateral prefrontal cortex (DLPFC), which is known to participate in spatial working memory processes. However, it is not known whether or not the OFC also participates in spatial working memory and whether the OFC and DLPFC contribute equally to this process. To address these issues, we collected single-neuron activity from both areas while a monkey performed an oculomotor delayed-response task, and compared the characteristics of task-related activities between the OFC and DLPFC. All of the task-related activities observed in the DLPFC were also observed in the OFC. However, the proportion and response characteristics of task-related activities were different between the two areas. While most delay-period activity observed in the DLPFC was directionally selective and showed tonic sustained activation, most delay-period activity observed in the OFC was omni-directional and showed gradually increasing activity. Reward-period activity was predominant among task-related activities in the OFC. The proportion of neurons showing reward-period activity was significantly higher in the OFC than in the DLPFC. These results suggest that, although both the OFC and DLPFC participate in spatial working memory processes, the OFC is related more to the expectation and the detection of reward delivery, while the DLPFC is related more to the temporary maintenance of spatial information and its processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Barbas H, Pandya DN (1989) Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J Comp Neurol 286:353–375

    Article  PubMed  CAS  Google Scholar 

  • Bechara A, Damasio H, Tranel D, Anderson SW (1998) Dissociation of working memory from decision making within the human prefrontal cortex. J Neurosci 18:428–437

    PubMed  CAS  Google Scholar 

  • Bechara A, Tranel D, Damasio H (2000) Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain 123:2189–2202

    Article  PubMed  Google Scholar 

  • Bruce CJ, Goldberg ME (1985) Primate frontal eye fields. I. Single neurons discharging before saccades. J Neurophysiol 53:603–635

    PubMed  CAS  Google Scholar 

  • Butter CM (1969) Perseveration in extinction and in discrimination reversal tasks following selective frontal ablations in Macaca mulatta. Physiol Behav 4:163–171

    Article  Google Scholar 

  • Carlson S, Mikami A, Friedman H, Goldman-Rakic PS (1997) Movement- and delay-related neuronal activity in the posterior cingulate cortex of monkeys performing oculomotor and manual delayed response tasks. In: Sakata H, Mikami A, Fuster J (eds) The association cortex structure and function. Harwood Academic, Amsterdam, pp 207–217

    Google Scholar 

  • Carmichael ST, Price JL (1995) Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 363:615–641

    Article  PubMed  CAS  Google Scholar 

  • Carmichael ST, Price JL (1996) Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. J Comp Neurol 371:179–207

    Article  PubMed  CAS  Google Scholar 

  • Cavada C, Goldman-Rakic PS (1989) Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J Comp Neurol 287:422–445

    Article  PubMed  CAS  Google Scholar 

  • Cavada C, Compañy T, Hernández-González A, Reinoso-Suárez F (1995) Acetylcholinesterase histochemistry in the macaque thalamus reveals territories selectively connected to frontal, parietal and temporal association cortices. J Chem Neuroanat 8:245–257

    Article  PubMed  CAS  Google Scholar 

  • Cavada C, Compañy T, Tejedor J, Cruz-Rizzolo RJ, Reinoso-Suárez F (2000) The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cereb Cortex 10:220–242

    Article  PubMed  CAS  Google Scholar 

  • Chafee MV, Goldman-Rakic PS (1998) Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. J Neurophysiol 79:2919–2940

    PubMed  CAS  Google Scholar 

  • Chafee MV, Goldman-Rakic PS (2000) Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory-guided saccades. J Neurophysiol 83:1550–1566

    PubMed  CAS  Google Scholar 

  • Compte A, Constantinidis C, Tegner J, Raghavachari S, Chafee MV, Goldman-Rakic PS, Wang XJ (2003) Temporally irregular mnemonic persistent activity in prefrontal neurons of monkeys during a delayed response task. J Neurophysiol 90:3441–3454

    Article  PubMed  Google Scholar 

  • Constantinidis C, Franowicz MN, Goldman-Rakic PS (2001) The sensory nature of mnemonic representation in the primate prefrontal cortex. Nat Neurosci 4:311–316

    Article  PubMed  CAS  Google Scholar 

  • Critchley HG, Rolls ET (1996) Hunger and satiety modify the response of olfactory and visual neurons in the primate orbitofrontal cortex. J Neurophysiol 75:1673–1686

    PubMed  CAS  Google Scholar 

  • Damasio AR (1994) Descartes’ error. Putnam, New York

    Google Scholar 

  • Funahashi S, Kubota K (1994) Working memory and prefrontal cortex. Neurosci Res 21:1–11

    Article  PubMed  CAS  Google Scholar 

  • Funahashi S, Takeda K (2002) Information processes in the primate prefrontal cortex in relation to working memory processes. Rev Neurosci 13:313–345

    PubMed  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61:331–349

    PubMed  CAS  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1990) Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms. J Neurophysiol 63:814–831

    PubMed  CAS  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1991) Neuronal activity related to saccadic eye movements in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 65:1464–1483

    PubMed  CAS  Google Scholar 

  • Funahashi S, Chafee MV, Goldman-Rakic PS (1993) Prefrontal neuronal activity in rhesus monkeys performing a delayed anti-saccade task. Nature 365:753–756

    Article  PubMed  CAS  Google Scholar 

  • Fuster JM (1997) The prefrontal cortex. Lippincott–Raven, Philadelphia

    Google Scholar 

  • Goldman-Rakic PS (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In: Handbook of physiology. The nervous system. Higher functions of the brain, sect. 1, vol V, Am Physiol Soc, Bethesda, MD, pp 373–417

  • Goldman-Rakic PS, Funahashi S, Bruce CJ (1990) Neocortical memory circuits. Cold Spring Harb Symp Quant Biol 55:1025–1038

  • Hikosaka K, Watanabe M (2000) Delay activity of orbital and lateral prefrontal neurons of the monkey varying with different rewards. Cereb Cortex 10:263–271

    Article  PubMed  CAS  Google Scholar 

  • Hikosaka K, Watanabe M (2004) Long- and short-range reward expectancy in the primate orbitofrontal cortex. Eur J Neurosci 19:1046–1054

    Article  PubMed  Google Scholar 

  • Hikosaka O, Sakamoto M, Usui S (1989) Functional properties of monkey caudate neurons. III. Activities related to expectation of target and reward. J Neurophysiol 61:814–832

    PubMed  CAS  Google Scholar 

  • Ichihara-Takeda S, Funahashi S (2006) Reward-period activity in primate dorsolateral prefrontal and orbitofrontal neurons is affected by reward schedules. J Cogn Neurosci 18:212–226

    Article  PubMed  Google Scholar 

  • Judge SJ, Richmond BJ, Chu FC (1980) Implantation of magnetic search coils for measurement of eye position: an improved method. Vision Res 20:535–538

    Article  PubMed  CAS  Google Scholar 

  • Kawagoe R, Takikawa Y, Hikosaka O (1998) Expectation of reward modulates cognitive signals in the basal ganglia. Nat Neurosci 1:411–416

    Article  PubMed  CAS  Google Scholar 

  • Kowalska DM, Bachevalier J, Mishkin M (1991) The role of the inferior prefrontal convexity in performance of delayed nonmatching-to-sample. Neuropsychologia 29:583–600

    Article  PubMed  CAS  Google Scholar 

  • McEnaney KW, Butter CM (1969) Perseveration of responding and nonresponding in monkeys with orbital frontal ablations. J Comp Physiol Psychol 68:558–561

    Article  PubMed  CAS  Google Scholar 

  • Mesulam MM (2000) Principles of behavioral and cognitive neurology. Oxford University Press, Oxford

    Google Scholar 

  • Mikami A, Ito S, Kubota K (1982) Visual response properties of dorsolateral prefrontal neurons during visual fixation task. J Neurophysiol 47:593–605

    PubMed  CAS  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202

    Article  PubMed  CAS  Google Scholar 

  • Morecraft RJ, Geula C, Mesulam MM (1992) Cytoarchitecture and neural afferents of orbitofrontal cortex in the brain of the monkey. J Comp Neurol 323:341–358

    Article  PubMed  CAS  Google Scholar 

  • Niki H (1974) Differential activity of prefrontal units during right and left delayed response trials. Brain Res 70:346–349

    Article  PubMed  CAS  Google Scholar 

  • Niki H, Watanabe M (1976) Prefrontal unit activity and delayed response: relation to cue location versus direction of response. Brain Res 105:79–88

    Article  PubMed  CAS  Google Scholar 

  • Niki H, Sakai M, Kubota K (1972) Delayed alternation performance and unit activity of the caudate head and medial orbitofrontal gyrus in the monkey. Brain Res 38:343–353

    Article  PubMed  CAS  Google Scholar 

  • Padoa-Schioppa C, Assad JA (2006) Neurons in the orbitofrontal cortex encode economic value. Nature 441:223–226

    Article  PubMed  CAS  Google Scholar 

  • Passingham R (1975) Delayed matching after selective prefrontal lesions in monkeys (Macaca mulatta). Brain Res 92:89–102

    Article  PubMed  CAS  Google Scholar 

  • Petrides M, Pandya DN (1984) Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228:105–116

    Article  PubMed  CAS  Google Scholar 

  • Robinson DA (1963) A method of measuring eye movements using a scleral search coil in a magnetic field. IEEE Trans Biomed Eng 10:137–145

    PubMed  CAS  Google Scholar 

  • Roesch MR, Olson CR (2004) Neuronal activity related to reward value and motivation in primate frontal cortex. Science 304:307–310

    Article  PubMed  CAS  Google Scholar 

  • Roesch MR, Olson CR (2005a) Neuronal activity dependent on anticipated and elapsed delay in macaque prefrontal cortex, frontal and supplementary eye fields, and premotor cortex. J Neurophysiol 94:1469–1497

    Article  Google Scholar 

  • Roesch MR, Olson CR (2005b) Neuronal activity in primate orbitofrontal cortex reflects the value of time. J Neurophysiol 94:2457–2471

    Article  Google Scholar 

  • Rolls ET (1999) The brain and emotion. Oxford University Press, Oxford

    Google Scholar 

  • Rolls ET, Hornak J, Wade D, McGrath J (1994) Emotion-related learning in patients with social and emotional changes associated with frontal lobe damage. J Neurol Neurosurg Psychiatry 57:1518–1524

    Article  PubMed  CAS  Google Scholar 

  • Rosenkilde CE (1979) Functional heterogeneity of the prefrontal cortex in the monkey: a review. Behav Neural Biol 25:301–345

    Article  PubMed  CAS  Google Scholar 

  • Rosenkilde CE, Bauer RH, Fuster JM (1981) Single cell activity in ventral prefrontal cortex of behaving monkeys. Brain Res 209:375–394

    Article  PubMed  CAS  Google Scholar 

  • Sawaguchi T (1998) Attenuation of delay-period activity of monkey prefrontal neurons by á2-adrenergic antagonist during an oculomotor delayed-response task. J Neurophysiol 80:2200–2205

    PubMed  CAS  Google Scholar 

  • Sawaguchi T (2001) The effects of dopamine and its antagonists on directional delay-period activity of prefrontal neurons in monkeys during an oculomotor delayed-response task. Neurosci Res 41:115–128

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Azuma M (1983) Topographic studies on visual neurons in the dorsolateral prefrontal cortex of the monkey. Exp Brain Res 53:47–58

    Article  PubMed  CAS  Google Scholar 

  • Takeda K, Funahashi S (2002) Prefrontal task-related activity representing visual cue location or saccade direction in spatial working memory tasks. J Neurophysiol 87:567–588

    PubMed  Google Scholar 

  • Takeda K, Funahashi S (2004) Population vector analysis of primate prefrontal activity during spatial working memory. Cereb Cortex 14:1328–1339

    Article  PubMed  Google Scholar 

  • Thorpe SJ, Rolls ET, Maddison S (1983) The orbitofrontal cortex: neuronal activity in the behaving monkey. Exp Brain Res 49:93–115

    Article  PubMed  CAS  Google Scholar 

  • Tremblay L, Schultz W (1999) Relative reward preference in primate orbitofrontal cortex. Nature 398:704–708

    Article  PubMed  CAS  Google Scholar 

  • Tremblay L, Schultz W (2000) Reward-related neuronal activity during Go–No Go task performance in primate orbitofrontal cortex. J Neurophysiol 83:1864–1876

    PubMed  CAS  Google Scholar 

  • Tsujimoto S, Sawaguchi T (2004) Properties of delay-period neuronal activity in the primate prefrontal cortex during memory-and-sensory-guided saccade tasks. Eur J Neurosci 19:447–458

    Article  PubMed  Google Scholar 

  • Vogt BA, Pandya DN (1987) Cingulate cortex of the rhesus monkey: II. Cortical afferents. J Comp Neurol 262:271–289

    Article  PubMed  CAS  Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DG, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, pp 546–586

    Google Scholar 

  • Wallis JD, Miller EK (2003) Neuronal activity in the primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task. Eur J Neurosci 18:2069–2081

    Article  PubMed  Google Scholar 

  • Watanabe M (1989) The appropriateness of behavioral responses coded in post-trial activity of primate prefrontal units. Neuroscience Lett 101:113–117

    Article  CAS  Google Scholar 

  • Watanabe Y, Funahashi S (2004) Neuronal activity throughout the primate mediodorsal nucleus of the thalamus during oculomotor delayed-responses. I. Cue-, delay-, and response-period activity. J Neurophysiol 92:1738–1755

    Article  PubMed  Google Scholar 

  • Zald DH, Kim SW (2001) The orbitofrontal cortex. In: Salloway S, Malloy PF, Duffy JD (eds) The frontal lobes and neuropsychiatric illness. American Psychiatric Publishers Inc., Arlington, pp 33–69

    Google Scholar 

Download references

Acknowledgments

The authors thank Prof. H. Komatsu, Prof. N. Sadato, and Dr. T. Okada for their help with taking MRI photographs of the monkey brain at the National Institute for Physiological Sciences, Okazaki, Japan. The authors also thank Dr. K. Hikosaka and Dr. K. Matsumoto for providing valuable advice on recording single-neuron activity from the OFC, Dr. T. Furuta for valuable advice and technical support with the histological preparations, and Dr. K. Takeda and Dr. Y. Watanabe for their valuable comments during the experiment. This study was supported by a Grant-in-Aid for Scientific Research (14380367, 17300101) from the Japanese Ministry of Education, Science, Technology, Sports and Culture (MEXT) and by the 21st Century COE Program (D-10 to Kyoto University), MEXT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shintaro Funahashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ichihara-Takeda, S., Funahashi, S. Activity of primate orbitofrontal and dorsolateral prefrontal neurons: task-related activity during an oculomotor delayed-response task. Exp Brain Res 181, 409–425 (2007). https://doi.org/10.1007/s00221-007-0941-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-007-0941-0

Keywords

Navigation