Skip to main content
Log in

Functional organization of lemniscal and nonlemniscal auditory thalamus

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Thalamic nuclei of the mammalian auditory system exhibit remarkable parallelism in their anatomical pathways and the patterns of synaptic signalling. This has led to the theory that lemniscal, or core thalamocortical projection, carries tonotopically organized and auditory specific information whereas the nonlemniscal thalamocortical pathway forms part of an integrative system that plays an important role in polysensory integration, temporal pattern recognition, and certain forms of learning. Recent experimental evidence derived from molecular, cellular and behavioural studies indeed supports the conjecture that lemniscal and nonlemniscal pathways are involved in distinctive auditory functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahissar E, Sosnik R, Haidarliu S (2000) Transformation from temporal to rate coding in a somatosensory thalamocortical pathway. Nature 406:302–306

    Article  CAS  PubMed  Google Scholar 

  • Aitkin LM, Prain SM (1974) Medial geniculate body: unit responses in the awake cat. J Neurophysiol 37:512–521

    CAS  PubMed  Google Scholar 

  • Andersen RA, Knight PL, Merzenich MM (1980) The thalamocortical and corticothalamic connections of AI, AII, and the anterior auditory field (AAF) in the cat: evidence for two largely segregated systems of connections. J Comp Neurol 194:663–701

    CAS  PubMed  Google Scholar 

  • Bartlett EL, Smith PH (1999) Anatomic, intrinsic, and synaptic properties of dorsal and ventral division neurons in rat medial geniculate body. J Neurophysiol 81:1999–2016

    CAS  PubMed  Google Scholar 

  • Bordi F, LeDoux JE (1994a) Response properties of single units in areas of rat auditory thalamus that project to the amygdala. I. Acoustic discharge patterns and frequency receptive fields. Exp Brain Res 98:261–274

    CAS  PubMed  Google Scholar 

  • Bordi F, LeDoux JE (1994b) Response properties of single units in areas of rat auditory thalamus that project to the amygdala. II. Cells receiving convergent auditory and somatosensory inputs and cells antidromically activated by amygdala stimulation. Exp Brain Res 98:275–286

    CAS  PubMed  Google Scholar 

  • Brecht M, Sakmann B (2002) Whisker maps of neuronal subclasses of the rat ventral posterior medial thalamus, identified by whole-cell voltage recording and morphological reconstruction. J Physiol 538:495–515

    Article  CAS  PubMed  Google Scholar 

  • Calford MB (1983) The parcellation of the medial geniculate body of the cat defined by the auditory response properties of single units. J Neurosci 3:2350–2364

    CAS  PubMed  Google Scholar 

  • Calford MB, Aitkin LM (1983) Ascending projections to the medial geniculate body of the cat: evidence for multiple, parallel auditory pathways through thalamus. J Neurosci 3:2365–2380

    CAS  PubMed  Google Scholar 

  • Carr C (2002) Sounds, signals and space maps. Nature 415:29–31

    Article  CAS  PubMed  Google Scholar 

  • Clarey JC, Irvine DR (1990) The anterior ectosylvian sulcal auditory field in the cat. II. A horseradish peroxidase study of its thalamic and cortical connections. J Comp Neurol 301:304–324

    CAS  PubMed  Google Scholar 

  • Clugnet MC, LeDoux JE (1990) Synaptic plasticity in fear conditioning circuits: induction of LTP in the lateral nucleus of the amygdala by stimulation of the medial geniculate body. J Neurosci 10:2818–2824

    CAS  PubMed  Google Scholar 

  • Collins DR, Paré D (2000) Differential fear conditioning induces reciprocal changes in the sensory responses of lateral amygdala neurons to the CS+ and CS. Learn Mem 7:97–103

    Article  CAS  PubMed  Google Scholar 

  • Cruikshank SJ, Killackey HP, Metherate R (2001) Parvalbumin and calbindin are differentially distributed within primary and secondary subregions of the mouse auditory forebrain. Neuroscience 105:553–569

    Article  CAS  PubMed  Google Scholar 

  • Deschenes M, Bourassa J, Pinault D (1994) Corticothalamic projections from layer V cells in rat are collaterals of long-range corticofugal axons. Brain Res 664:215–219

    CAS  PubMed  Google Scholar 

  • Deschenes M, Veinante P, Zhang ZW (1998) The organization of corticothalamic projections: reciprocity versus parity. Brain Res Brain Res Rev 28:286–308

    CAS  PubMed  Google Scholar 

  • Destexhe A, Neubig M, Ulrich D, Huguenard J (1998) Dendritic low-threshold calcium currents in thalamic relay cells. J Neurosci 18:3574–3588

    CAS  PubMed  Google Scholar 

  • Diamond ME (2000) Neurobiology. Parallel sensing. Nature 406:245–247

    Article  CAS  PubMed  Google Scholar 

  • Doron NN, Ledoux JE (1999) Organization of projections to the lateral amygdala from auditory and visual areas of the thalamus in the rat. J Comp Neurol 412:383–409

    Google Scholar 

  • Doron NN, Ledoux JE (2000) Cells in the posterior thalamus project to both amygdala and temporal cortex: a quantitative retrograde double-labeling study in the rat. J Comp Neurol 425:257–274

    Article  CAS  PubMed  Google Scholar 

  • Druga R, Syka J (1993) NADPH-diaphorase activity in the central auditory structures of the rat. Neuroreport 4:999–1002

    CAS  PubMed  Google Scholar 

  • Duncan GE, Henson OW (1994) Brain activity patterns in flying, echolocating bats (Pteronotus parnellii): assessment by high resolution autoradiographic imaging with [3H]2-deoxyglucose. Neuroscience 59:1051–1070

    Article  CAS  PubMed  Google Scholar 

  • Duvel AD, Smith DM, Talk A, Gabriel M (2001) Medial geniculate, amygdalar and cingulate cortical training-induced neuronal activity during discriminative avoidance learning in rabbits with auditory cortical lesions. J Neurosci 21:3271–3281

    CAS  PubMed  Google Scholar 

  • Edeline JM (1999) Learning-induced physiological plasticity in the thalamo-cortical sensory systems: a critical evaluation of receptive field plasticity, map changes and their potential mechanisms. Prog Neurobiol 57:165–224

    Article  CAS  PubMed  Google Scholar 

  • Edeline JM, Weinberger NM (1992) Associative retuning in the thalamic source of input to the amygdala and auditory cortex: receptive field plasticity in the medial division of the medial geniculate body. Behav Neurosci 106:81–105

    CAS  PubMed  Google Scholar 

  • Edeline JM, Manunta Y, Nodal FR, Bajo VM (1999) Do auditory responses recorded from awake animals reflect the anatomical parcellation of the auditory thalamus? Hear Res 131:135–152

    Article  CAS  PubMed  Google Scholar 

  • Edeline JM, Manunta Y, Hennevin E (2000) Auditory thalamus neurons during sleep: changes in frequency selectivity, threshold, and receptive field size. J Neurophysiol 84:934–952

    CAS  PubMed  Google Scholar 

  • Fitzpatrick D, Diamond IT, Raczkowski D (1989) Cholinergic and monoaminergic innervation of the cat's thalamus: comparison of the lateral geniculate nucleus with other principal sensory nuclei. J Comp Neurol 288:647–675

    CAS  PubMed  Google Scholar 

  • Fitzpatrick DC, Olsen JF, Suga N (1998) Connections among functional areas in the mustached bat auditory cortex. J Comp Neurol 391:366–396

    Article  CAS  PubMed  Google Scholar 

  • Gao E, Suga N (2000) Experience-dependent plasticity in the auditory cortex and the inferior colliculus of bats: role of the corticofugal system. Proc Natl Acad Sci USA 97:8081–8086

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Lima F, Cada A (1994) Cytochrome oxidase activity in the auditory system of the mouse: a qualitative and quantitative histochemical study. Neuroscience 63:559–578

    Article  CAS  PubMed  Google Scholar 

  • Graybiel AM (1972) Some ascending connections of the pulvinar and nucleus lateralis posterior of the thalamus in the cat. Brain Res 44:99–125

    Article  CAS  PubMed  Google Scholar 

  • He J (2001) On and off pathways segregated at the auditory thalamus of the guinea pig. J Neurosci 21:8672–8679

    CAS  PubMed  Google Scholar 

  • He J, Hashikawa T (1998) Connections of the dorsal zone of cat auditory cortex. J Comp Neurol 400:334–348

    Article  CAS  PubMed  Google Scholar 

  • He J, Hu B (2002) Differential distribution of burst and single-spike responses in auditory thalamus. J Neurophysiol 88:2152–2156

    PubMed  Google Scholar 

  • Hu B (1995) Cellular basis of temporal synaptic signalling: an in vitro electrophysiological study in rat auditory thalamus. J Physiol 483:167–182

    CAS  PubMed  Google Scholar 

  • Hu B, Steriade M, Deschenes M (1989) The cellular mechanism of thalamic ponto-geniculo-occipital waves. Neuroscience 31:25–35

    Article  CAS  PubMed  Google Scholar 

  • Hu B, Senatorov V, Mooney D (1994) Lemniscal and non-lemniscal synaptic transmission in rat auditory thalamus. J Physiol 479:217–231

    PubMed  Google Scholar 

  • Huang YY, Martin KC, Kandel ER (2000) Both protein kinase A and mitogen-activated protein kinase are required in the amygdala for the macromolecular synthesis-dependent late phase of long-term potentiation. J Neurosci 20:6317–6325

    CAS  PubMed  Google Scholar 

  • Hughes SW, Cope DW, Toth TI, Williams SR, Crunelli V (1999) All thalamocortical neurones possess a T-type Ca2+ 'window' current that enables the expression of bistability-mediated activities. J Physiol 517:805–815

    CAS  PubMed  Google Scholar 

  • Imig TJ, Morel A (1983) Organization of the thalamocortical auditory system in the cat. Annu Rev Neurosci 6:95–120

    Article  CAS  PubMed  Google Scholar 

  • Inglis WL, Winn P (1995) The pedunculopontine tegmental nucleus: where the striatum meets the reticular formation. Prog Neurobiol 47:1–29

    CAS  PubMed  Google Scholar 

  • Iwata K, Kenshalo DR, Jr., Dubner R, Nahin RL (1992) Diencephalic projections from the superficial and deep laminae of the medullary dorsal horn in the rat. J Comp Neurol 321:404–420

    CAS  PubMed  Google Scholar 

  • Jahnsen H, Llinas R (1984a) Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol 349:205–226

    CAS  PubMed  Google Scholar 

  • Jahnsen H, Llinas R (1984b) Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol 349:227–247

    CAS  PubMed  Google Scholar 

  • Jones EG (1985) The thalamus. Plenum Press, New York

  • Jones EG (2001) The thalamic matrix and thalamocortical synchrony. Trends Neurosci 24:595–601

    Google Scholar 

  • Kakei S, Na J, Shinoda Y (2001) Thalamic terminal morphology and distribution of single corticothalamic axons originating from layers 5 and 6 of the cat motor cortex. J Comp Neurol 437:170–185

    Google Scholar 

  • Kelly JB (1973) The effects of insular and temporal lesions in cats on two types of auditory pattern discrimination. Brain Res 62:71–87

    Article  CAS  PubMed  Google Scholar 

  • Knudsen EI, Zheng W, DeBello WM (2000) Traces of learning in the auditory localization pathway. Proc Natl Acad Sci USA 97:11815–11820

    Article  CAS  PubMed  Google Scholar 

  • Komura Y, Tamura R, Uwano T, Nishijo H, Kaga K, Ono T (2001) Retrospective and prospective coding for predicted reward in the sensory thalamus. Nature 412:546–549

    Article  CAS  PubMed  Google Scholar 

  • Kraus N, McGee T (1995) The middle latency response generating system. Electroencephalogr Clin Neurophysiol Suppl 44:93–101

    CAS  PubMed  Google Scholar 

  • Kraus N, McGee T, Littman T, Nicol T, King C (1994) Nonprimary auditory thalamic representation of acoustic change. J Neurophysiol 72:1270–1277

    CAS  PubMed  Google Scholar 

  • Kraus N, McGee T, Carrell TD, Sharma A (1995) Neurophysiologic bases of speech discrimination. Ear Hear 16:19–37

    CAS  PubMed  Google Scholar 

  • Layton BS, Toga AW, Horenstein S, Davenport DG (1979) Temporal pattern discrimination survives simultaneous bilateral ablation of suprasylvian cortex but not sequential bilateral ablation of insular-temporal cortex in the cat. Brain Res 173:337–340

    Article  CAS  PubMed  Google Scholar 

  • LeDoux J (1996) Emotional networks and motor control: a fearful view. Prog Brain Res 107:437–446

    CAS  PubMed  Google Scholar 

  • LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    CAS  PubMed  Google Scholar 

  • Ledoux JE, Ruggiero DA, Forest R, Stornetta R, Reis DJ (1987) Topographic organization of convergent projections to the thalamus from the inferior colliculus and spinal cord in the rat. J Comp Neurol 264:123–146

    Google Scholar 

  • Lennartz RC, Weinberger NM (1992) Frequency selectivity is related to temporal processing in parallel thalamocortical auditory pathways. Brain Res 583:81–92

    CAS  PubMed  Google Scholar 

  • Levey AI, Hallanger AE, Wainer BH (1987) Choline acetyltransferase immunoreactivity in the rat thalamus. J Comp Neurol 257:317–332

    CAS  PubMed  Google Scholar 

  • Lisman JE (1997) Bursts as a unit of neural information: making unreliable synapses reliable. Trends Neurosci 20:38–43

    CAS  PubMed  Google Scholar 

  • Magee JC, Johnston D (1995) Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268:301–304

    Google Scholar 

  • Maren S (1999) Long-term potentiation in the amygdala: a mechanism for emotional learning and memory. Trends Neurosci 22:561–567

    CAS  PubMed  Google Scholar 

  • Markram H, Sakmann B (1994) Calcium transients in dendrites of neocortical neurons evoked by single subthreshold excitatory postsynaptic potentials via low-voltage-activated calcium channels. Proc Natl Acad Sci USA 91:5207–5211

    CAS  PubMed  Google Scholar 

  • Matsumoto N, Minamimoto T, Graybiel AM, Kimura M (2001) Neurons in the thalamic CM–Pf complex supply striatal neurons with information about behaviorally significant sensory events. J Neurophysiol 85:960–976

    CAS  PubMed  Google Scholar 

  • McKernan MG, Shinnick-Gallagher P (1997) Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 390:607–611

    Google Scholar 

  • Mellor J, Nicoll RA, Schmitz D (2002) Mediation of hippocampal mossy fiber long-term potentiation by presynaptic Ih channels. Science 295:143–147

    Article  CAS  PubMed  Google Scholar 

  • Merabet L, Desautels A, Minville K, Casanova C (1998) Motion integration in a thalamic visual nucleus. Nature 396:265–268

    CAS  PubMed  Google Scholar 

  • Mesulam MM, Mufson EJ, Wainer BH, Levey AI (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1–Ch6). Neuroscience 10:1185–1201

    CAS  PubMed  Google Scholar 

  • Miller LM, Schreiner CE (2000) Stimulus-based state control in the thalamocortical system. J Neurosci 20:7011–7016

    CAS  PubMed  Google Scholar 

  • Miller LM, Escabi MA, Read HL, Schreiner CE (2001a) Functional convergence of response properties in the auditory thalamocortical system. Neuron 32:151–160

    CAS  PubMed  Google Scholar 

  • Miller LM, Escabi MA, Schreiner CE (2001b) Feature selectivity and interneuronal cooperation in the thalamocortical system. J Neurosci 21:8136–8144

    CAS  PubMed  Google Scholar 

  • Mooney DM (2001) Cholinergic control of sensory synaptic transmission in primary and nonprimary auditory thalamus of rat. Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, p 172

  • Mooney DM, Hu B (2002) Induction of long-term potentiation in the thalamoamygdala pathway by burst stimulation. Program no. 659.2 of 2002 Abstract Viewer/Itinerary Planner, Society for Neuroscience, Washington DC. Available online http://sfn.scholarone.com/itin2002/index.html

  • Mooney DM, Hu B, Senatorov VV (1995) Muscarine induces an anomalous inhibition of synaptic transmission in rat auditory thalamic neurons in vitro. J Pharmacol Exp Ther 275:838–844

    CAS  PubMed  Google Scholar 

  • Moosmang S, Biel M, Hofmann F, Ludwig A (1999) Differential distribution of four hyperpolarization-activated cation channels in mouse brain. Biol Chem 380:975–980

    CAS  PubMed  Google Scholar 

  • Neff WD, Casseday JH, Cranford JL (1972) The medial geniculate body and associated thalamic cell groups: behavioral studies. Brain Behav Evol 6:302–310

    CAS  PubMed  Google Scholar 

  • Ojima H (1994) Terminal morphology and distribution of corticothalamic fibers originating from layers 5 and 6 of cat primary auditory cortex. Cereb Cortex 4:646–663

    CAS  PubMed  Google Scholar 

  • Olsen JF, Suga N (1991a) Combination-sensitive neurons in the medial geniculate body of the mustached bat: encoding of relative velocity information. J Neurophysiol 65:1254–1274

    CAS  PubMed  Google Scholar 

  • Olsen JF, Suga N (1991b) Combination-sensitive neurons in the medial geniculate body of the mustached bat: encoding of target range information. J Neurophysiol 65:1275–1296

    CAS  PubMed  Google Scholar 

  • Pinault D (1996) A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or neurobiotin. J Neurosci Methods 65:113–136

    Article  CAS  PubMed  Google Scholar 

  • Raczkowski D, Diamond IT, Winer J (1976) Organization of thalamocortical auditory system in the cat studied with horseradish peroxidase. Brain Res 101:345–354

    Article  CAS  PubMed  Google Scholar 

  • Rouiller EM, Wan XS, Moret V, Liang F (1992) Mapping of c-fos expression elicited by pure tones stimulation in the auditory pathways of the rat, with emphasis on the cochlear nucleus. Neurosci Lett 144:19–24

    Article  CAS  PubMed  Google Scholar 

  • Santoro B, Chen S, Luthi A, Pavlidis P, Shumyatsky GP, Tibbs GR, Siegelbaum SA (2000) Molecular and functional heterogeneity of hyperpolarization-activated pacemaker channels in the mouse CNS. J Neurosci 20:5264–5275

    CAS  PubMed  Google Scholar 

  • Semba K, Reiner PB, Fibiger HC (1990) Single cholinergic mesopontine tegmental neurons project to both the pontine reticular formation and the thalamus in the rat. Neuroscience 38:643–654

    CAS  PubMed  Google Scholar 

  • Senatorov VV, Hu B (1997) Differential Na+–K+-ATPase activity in rat lemniscal and non-lemniscal auditory thalami. J Physiol 502:387–395

    CAS  PubMed  Google Scholar 

  • Senatorov V, Hu B (2000) Differential neuronal distribution of inward rectifying conductances in rat auditory thalamus. Soc Neurosci Abstr 26, Program no. 637.2

  • Senatorov VV, Mooney D, Hu B (1997) The electrogenic effects of Na+–K+-ATPase in rat auditory thalamus. J Physiol 502:375–385

    CAS  PubMed  Google Scholar 

  • Sherman SM (2001) Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci 24:122–126

    Article  CAS  PubMed  Google Scholar 

  • Shinonaga Y, Takada M, Mizuno N (1994) Direct projections from the non-laminated divisions of the medial geniculate nucleus to the temporal polar cortex and amygdala in the cat. J Comp Neurol 340:405–426

    CAS  PubMed  Google Scholar 

  • Steriade M (1990) Cholinergic control of thalamic function [in French]. Arch Int Physiol Biochim 98:A11–A46

    CAS  PubMed  Google Scholar 

  • Steriade M (1996) Arousal: revisiting the reticular activating system. Science 272:225–226

    Google Scholar 

  • Suga N (1990) Biosonar and neural computation in bats. Sci Am 262:60–68

    CAS  PubMed  Google Scholar 

  • Suga N, Gao E, Zhang Y, Ma X, Olsen JF (2000) The corticofugal system for hearing: recent progress. Proc Natl Acad Sci USA 97:11807–11814

    Article  CAS  PubMed  Google Scholar 

  • Tennigkeit F, Puil E, Schwarz DW (1997) Firing modes and membrane properties in lemniscal auditory thalamus. Acta Otolaryngol 117:254–257

    CAS  PubMed  Google Scholar 

  • Weinberger NM (1995) Dynamic regulation of receptive fields and maps in the adult sensory cortex. Annu Rev Neurosci 18:129–158

    CAS  PubMed  Google Scholar 

  • Weinberger NM (1998) Physiological memory in primary auditory cortex: characteristics and mechanisms. Neurobiol Learn Mem 70:226–251

    Article  CAS  PubMed  Google Scholar 

  • Weinberger NM, Bakin JS (1998) Learning-induced physiological memory in adult primary auditory cortex: receptive fields plasticity, model, and mechanisms. Audiol Neurootol 3:145–167

    CAS  Google Scholar 

  • Williams SR, Stuart GJ (2000) Action potential backpropagation and somato-dendritic distribution of ion channels in thalamocortical neurons. J Neurosci 20:1307–1317

    CAS  PubMed  Google Scholar 

  • Williams JA, Comisarow J, Day J, Fibiger HC, Reiner PB (1994) State-dependent release of acetylcholine in rat thalamus measured by in vivo microdialysis. J Neurosci 14:5236–5242

    CAS  PubMed  Google Scholar 

  • Winer J (1992) The functional architecture of the medial geniculate body and the primary auditory cortex. In: Webster DB, Popper, AN, Fay RR (eds) The mammalian auditory pathway. Springer-Verlag, Berlin Heidelberg New York, pp 222–409

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, B. Functional organization of lemniscal and nonlemniscal auditory thalamus. Exp Brain Res 153, 543–549 (2003). https://doi.org/10.1007/s00221-003-1611-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-003-1611-5

Keywords

Navigation