Skip to main content
Log in

Distribution of corticotectal cells in macaque

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We compared the cortical inputs to the superficial and deep compartments of the superior colliculus, asking if the corticotectal system, like the colliculus itself, consists of two functional divisions: visual and visuomotor. We made injections of retrograde tracer extending into both superficial and deep layers in three colliculi: the injection site involved mainly the upper quadrant representation in one case, the lower quadrant representation in a second case, and both quadrants in a third. In a fourth colliculus, the tracer injection was restricted to the lower quadrant representation of the superficial layers. After injections involving both superficial and deep layers, labeled cells were seen over V1, many prestriate visual areas, and in prefrontal and posterior parietal cortex. Both the density of labeled cells and the degree of visuotopic order as inferred from the distribution of labeled cells in cortex varied among areas. In visual areas comprising the lower levels of the cortical hierarchy, visuotopy was preserved, whereas in "higher" areas the distribution of labeled cells did not strongly reflect the visuotopic location of the injection. Despite the widespread distribution of labeled cells, there were several areas with few or no labeled cells: MSTd, 7a, VIP, MIP, and TE. In the case with an injection restricted to superficial layers, labeled cells were seen only in V1 and in striate-recipient areas V2, V3, and MT. The results are consistent with the idea that the corticotectal system consists of two largely nonoverlapping components: a visual component consisting of striate cortex and striate-recipient areas, which projects only to the superficial layers, and a visuomotor component consisting of many other prestriate visual areas as well as frontal and parietal visuomotor areas, which projects to the deep compartment of the colliculus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1. A
Fig. 2a–c.
Fig. 3.
Fig. 4a–c.
Fig. 5a–c.
Fig. 6a–c.
Fig. 7a–c.
Fig. 8A–D.

Similar content being viewed by others

References

  • Abel PL, O'Brien BJ, Lia B, Olavarria JF (1997) Distribution of neurons projecting to the superior colliculus correlates with thick cytochrome oxidase stripes in macaque visual area V2. J Comp Neurol 377:313–323

    Article  CAS  PubMed  Google Scholar 

  • Andersen RA, Essick GK, Siegel RM (1987) Neurons of area 7 activated by both visual stimuli and oculomotor behavior. Exp Brain Res 67:316–322

    CAS  PubMed  Google Scholar 

  • Andersen RA, Asanuma C, Essick G, Siegel RM (1990) Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. J Comp Neurol 296:65–113

    CAS  PubMed  Google Scholar 

  • Andersen RA, Brotchie PR, Mazzoni P (1992) Evidence for the lateral intraparietal area as the parietal eye field. Curr Opin Neurobiol 2:840–846

    CAS  PubMed  Google Scholar 

  • Asanuma C, Andersen RA, Cowan WM (1985) The thalamic relations of the caudal inferior parietal lobule and the lateral prefrontal cortex in monkeys: divergent cortical projections from cell clusters in the medial pulvinar nucleus. J Comp Neurol 241:357–361

    Google Scholar 

  • Baizer JS, Ungerleider LG, Desimone R (1991) Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques. J Neurosci 11:168–190

    CAS  PubMed  Google Scholar 

  • Baizer JS, Desimone R, Ungerleider LG (1993) Comparison of subcortical connections of inferior temporal and posterior parietal cortex in monkeys. Vis Neurosci 10:59–72

    CAS  PubMed  Google Scholar 

  • Baker JF, Gibson A, Mower G, Robinson F, Glickstein M (1983) Cat visual corticopontine cells project to the superior colliculus. Brain Res 265:227–232

    Article  CAS  PubMed  Google Scholar 

  • Basso MA, Krauzlis RJ, Wurtz RH (2000) Activation and inactivation of rostral superior colliculus neurons during smooth-pursuit eye movements in monkeys. J Neurophysiol 84:892–908

    CAS  PubMed  Google Scholar 

  • Beck PD, Kaas JH (1999) Cortical connections of the dorsomedial visual area in old world macaque monkeys. J Comp Neurol 406:487–502

    Google Scholar 

  • Behan M, Appell PP (1992) Intrinsic circuitry in the cat superior colliculus: projections from the superficial layers. J Comp Neurol 315:230–243

    CAS  PubMed  Google Scholar 

  • Bender DB (1981) Retinotopic organization of macaque pulvinar. J Neurophysiol 46:672–693

    CAS  PubMed  Google Scholar 

  • Bender DB, Davidson RM (1986) Global visual processing in the monkey superior colliculus. Brain Res 381:372–375

    Article  CAS  PubMed  Google Scholar 

  • Benevento LA, Davis B (1977) Topographical projections of the prestriate cortex to the pulvinar nuclei in the macaque monkey: an autoradiographic study. Exp Brain Res 30:405–424

    CAS  PubMed  Google Scholar 

  • Blatt GJ, Andersen RA, Stoner GR (1990) Visual receptive field organization and cortico-cortical connections of the lateral intraparietal area (area LIP) in the macaque. J Comp Neurol 299:421–445

    CAS  PubMed  Google Scholar 

  • Boussaoud D, Desimone R, Ungerleider LG (1991) Visual topography of area TEO in the macaque. J Comp Neurol 306:554–575

    CAS  PubMed  Google Scholar 

  • Boussaoud D, Desimone R, Ungerleider LG (1992) Subcortical connections of visual areas MST and FST in macaques. Vis Neurosci 9:291–302

    CAS  PubMed  Google Scholar 

  • Bruce C, Desimone R, Gross CG (1981) Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J Neurophysiol 46:369–384

    CAS  PubMed  Google Scholar 

  • Bruce CJ, Goldberg ME (1985) Primate frontal eye fields. I. Single neurons discharging before saccades. J Neurophysiol 53:603–635

    CAS  PubMed  Google Scholar 

  • Campos-Ortega JA, Hayhow WR (1972) On the organisation of the visual cortical projection to the pulvinar in Macaca mulatta. Brain Behav Evol 6:394–423

    CAS  PubMed  Google Scholar 

  • Chaturvedi V, Van Gisbergen JA (2000) Stimulation in the rostral pole of monkey superior colliculus: effects on vergence eye movements. Exp Brain Res 132:72–78

    Article  CAS  PubMed  Google Scholar 

  • Cohen JL, Robinson F, May J, Glickstein M (1981) Corticopontine projections of the lateral suprasylvian cortex: de-emphasis of the central visual field. Brain Res 219:239–248

    Article  CAS  PubMed  Google Scholar 

  • Colby CL, Olson CR (1985) Visual topography of cortical projections to monkey superior colliculus. Soc Neurosci Abstr 11:1244

    Google Scholar 

  • Colby CL, Gattass R, Olson CR, Gross CG (1988) Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: a dual tracer study. J Comp Neurol 269:392–413

    CAS  PubMed  Google Scholar 

  • Colby CL, Duhamel JR (1991) Heterogeneity of extrastriate visual areas and multiple parietal areas in the macaque monkey. Neuropsychologia 29:517–537

    CAS  PubMed  Google Scholar 

  • Colby CL, Duhamel JR, Goldberg ME (1993) Ventral intraparietal area of the macaque: anatomic location and visual response properties. J Neurophysiol 69:902–914

    CAS  PubMed  Google Scholar 

  • Cowey A, Perry VH (1980) The projection of the fovea to the superior colliculus in rhesus monkeys. Neuroscience 5:53–61

    Article  CAS  PubMed  Google Scholar 

  • Cusick CG (1988) Anatomical organization of the superior colliculus in monkeys: corticotectal pathways for visual and visuomotor functions. Prog Brain Res 75:1–15

    CAS  Google Scholar 

  • Davidson RM, Bender DB (1991) Selectivity for relative motion in the monkey superior colliculus. J Neurophysiol 65:1115–1133

    CAS  PubMed  Google Scholar 

  • Davidson RM, Joly TJ, Bender DB (1992) Effect of corticotectal tract lesions on relative motion selectivity in the monkey superior colliculus. Exp Brain Res 92:246–258

    CAS  PubMed  Google Scholar 

  • Desimone R, Gross CG (1979) Visual areas in the temporal cortex of the macaque. Brain Res 178:363–380

    CAS  PubMed  Google Scholar 

  • Desimone R, Ungerleider LG (1986) Multiple visual areas in the caudal superior temporal sulcus of the macaque. J Comp Neurol 248:164–189

    Google Scholar 

  • Distel H, Fries W (1982) Contralateral cortical projections to the superior colliculus in the macaque monkey. Exp Brain Res 48:157–162

    CAS  PubMed  Google Scholar 

  • Distler C, Hoffman K-P (2001) Cortical input to the nucleus of the optic tract and dorsal terminal nucleus (NOT-DTN) in macaques: a retrograde tracing study. Cereb Cortex 11:572–580

    Article  CAS  PubMed  Google Scholar 

  • Duffy CJ, Wurtz RH (1997a) Medial superior temporal area neurons respond to speed patterns in optic flow. J Neurosci 17:2839–2851

    CAS  PubMed  Google Scholar 

  • Duffy CJ, Wurtz RH (1997b) Multiple temporal components of optic flow responses in MST neurons. Exp Brain Res 114:472–482

    CAS  PubMed  Google Scholar 

  • Faugier-Grimaud S, Ventre J (1989) Anatomic connections of inferior parietal cortex (area 7) with subcortical structures related to vestibulo-ocular function in a monkey (Macaca fascicularis). J Comp Neurol 280:1–14

    Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    CAS  PubMed  Google Scholar 

  • Freedman EG, Sparks DL (1997a) Activity of cells in the deeper layers of the superior colliculus of the rhesus monkey: evidence for a gaze displacement command. J Neurophysiol 78:1669–1690

    Google Scholar 

  • Freedman EG, Sparks DL (1997b) Eye-head coordination during head-unrestrained gaze shifts in rhesus monkeys. J Neurophysiol 77:2328–2348

    CAS  PubMed  Google Scholar 

  • Fries W (1984) Cortical projections to the superior colliculus in the macaque monkey: a retrograde study using horseradish peroxidase. J Comp Neurol 230:55–76

    Google Scholar 

  • Fries W, Keizer K, Kuypers HG (1985) Large layer VI cells in macaque striate cortex (Meynert cells) project to both superior colliculus and prestriate visual area V5. Exp Brain Res 58:613–616

    CAS  PubMed  Google Scholar 

  • Galletti C, Fattori P, Battaglini PP, Shipp S, Zeki S (1996) Functional demarcation of a border between areas V6 and V6A in the superior parietal gyrus of the macaque monkey. Eur J Neurosci 8:30–52

    CAS  PubMed  Google Scholar 

  • Galletti C, Gamberini M, Kutz DF, Fattori P, Luppino G, Matelli M (2001) The cortical connections of area V6: an occipito-parietal network processing visual information. Eur J Neurosci 13:1572–1588

    Article  CAS  PubMed  Google Scholar 

  • Gallyas F (1979) Silver staining of myelin by means of physical development. Neurol Res 1:203–209

    CAS  PubMed  Google Scholar 

  • Gattass R, Gross CG (1981) Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque. J Neurophysiol 46:621–638

    CAS  PubMed  Google Scholar 

  • Gattass R, Gross CG, Sandell JH (1981) Visual topography of V2 in the macaque. J Comp Neurol 201:519–539

    CAS  PubMed  Google Scholar 

  • Gattass R, Sousa AP, Gross CG (1988) Visuotopic organization and extent of V3 and V4 of the macaque. J Neurosci 8:1831–1845

    CAS  PubMed  Google Scholar 

  • Glickstein M, Cohen JL, Dixon B, Gibson A, Hollins M, Labossiere E, Robinson F (1980) Corticopontine visual projections in macaque monkeys. J Comp Neurol 190:209–229

    Google Scholar 

  • Glickstein M, May JG III, Mercier BE (1985) Corticopontine projection in the macaque: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol 235:343–359

    Google Scholar 

  • Hall WC, May PJ (1984) The anatomical basis for sensorimotor transformations in the superior colliculus. Contrib Sensory Physiol 8:1–40

    Google Scholar 

  • Helms M, Ozen G, Hall W (2002) Sublaminar specificity of vertical intrinsic circuitry in the superior colliculus. Neurosci Abstr 463:462

    Google Scholar 

  • Huerta MF, Harting JK (1984) The mammalian superior colliculus: studies of its morphology and connections. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum, New York, pp 687–773

  • Huerta MF, Krubitzer LA, Kaas JH (1986) Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys. I. Subcortical connections. J Comp Neurol 253:415–439

    Google Scholar 

  • Jay MF, Sparks DL (1987) Sensorimotor integration in the primate superior colliculus. II. Coordinates of auditory signals. J Neurophysiol 57:35–55

    CAS  PubMed  Google Scholar 

  • Jiang W, Wallace MT, Jiang H, Vaughan JW, Stein BE (2001) Two cortical areas mediate multisensory integration in superior colliculus neurons. J Neurophysiol 85:506–522

    CAS  PubMed  Google Scholar 

  • Joly TJ, Bender DB (1997) Loss of relative-motion sensitivity in the monkey superior colliculus after lesions of cortical area MT. Exp Brain Res 117:43–58

    Article  CAS  PubMed  Google Scholar 

  • Kaas J (1997) Theories of visual cortex organization in primates. In: Rockland KS, Kaas JH, Peters A (eds) Cereb cortex 12. Plenum, New York, pp 91–125

  • Kaas J, Lyon, DC (2001) Visual cortex organization in primates: theories of V3 and adjoining visual areas. Prog Brain Res 134:285–295

    CAS  PubMed  Google Scholar 

  • Komatsu H, Wurtz RH (1988) Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons. J Neurophysiol 60:580–603

    CAS  PubMed  Google Scholar 

  • Krauzlis RJ, Basso MA, Wurtz RH (2000) Discharge properties of neurons in the rostral superior colliculus of the monkey during smooth-pursuit eye movements. J Neurophysiol 84:876–891

    CAS  PubMed  Google Scholar 

  • Kunzle H, Akert K, Wurtz RH (1976) Projection of area 8 (frontal eye field) to superior colliculus in the monkey. An autoradiographic study. Brain Res 117:487–492

    Article  CAS  PubMed  Google Scholar 

  • Lamme VA (1995) The neurophysiology of figure-ground segregation in primary visual cortex. J Neurosci 15:1605–1615

    CAS  PubMed  Google Scholar 

  • Leichnetz GR, Spencer RF, Hardy SG, Astruc J (1981) The prefrontal corticotectal projection in the monkey; an anterograde and retrograde horseradish peroxidase study. Neuroscience 6:1023–1041

    CAS  PubMed  Google Scholar 

  • Levitt JB, Lund JS (1997) Contrast dependence of contextual effects in primate visual cortex. Nature 387:73–76

    Google Scholar 

  • Lia B, Olavarria JF (1996) The distribution of corticotectal projection neurons correlates with the interblob compartment in macaque striate cortex. Vis Neurosci 13:461–466

    CAS  PubMed  Google Scholar 

  • Lynch JC (1992) Saccade initiation and latency deficits after combined lesions of the frontal and posterior eye fields in monkeys. J Neurophysiol 68:1913–1916

    CAS  PubMed  Google Scholar 

  • Lynch JC, Graybiel AM, Lobeck LJ (1985) The differential projection of two cytoarchitectonic subregions of the inferior parietal lobule of macaque upon the deep layers of the superior colliculus. J Comp Neurol 235:241–254

    Google Scholar 

  • Lynch JC, Hoover JE, Strick PL (1994) Input to the primate frontal eye field from the substantia nigra, superior colliculus, and dentate nucleus demonstrated by transneuronal transport. Exp Brain Res 100:181–186

    CAS  PubMed  Google Scholar 

  • Lyon DC, Kaas JH (2001) Connectional and architectonic evidence for dorsal and ventral V3, and dorsomedial area in marmoset monkeys. J Neurosci 21:249–261

    CAS  PubMed  Google Scholar 

  • Lyon DC, Kaas JH (2002) Evidence for a modified V3 with dorsal and ventral halves in macaque monkeys. Neuron 33:453–461

    CAS  PubMed  Google Scholar 

  • Maguire WM, Baizer JS (1984) Visuotopic organization of the prelunate gyrus in rhesus monkey. J Neurosci 4:1690–1704

    CAS  PubMed  Google Scholar 

  • Maunsell JH, Van Essen DC (1983) The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci 3:2563–2586

    CAS  PubMed  Google Scholar 

  • Murata A, Gallese V, Luppino G, Kaseda M, Sakata H (2000) Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. J Neurophysiol 83:2580–2601

    CAS  PubMed  Google Scholar 

  • Newsome WT, Wurtz RH, Komatsu H (1988) Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs. J Neurophysiol 60:604–620

    CAS  PubMed  Google Scholar 

  • Ogasawara K, McHaffie JG, Stein BE (1984) Two visual corticotectal systems in cat. J Neurophysiol 52:1226–1245

    CAS  PubMed  Google Scholar 

  • Pare M, Wurtz RH (1997) Monkey posterior parietal cortex neurons antidromically activated from superior colliculus. J Neurophysiol 78:3493–3497

    Google Scholar 

  • Rosa M (1997) Visuotopic organization of primate extrastriate cortex. In: Rockland K, Kaas J, Peters A (eds) Cerebral cortex: extrastriate cortex in primates, vol 12. Plenum, New York

  • Saint-Cyr JA, Ungerleider LG, Desimone R (1990) Organization of visual cortical inputs to the striatum and subsequent outputs to the pallido-nigral complex in the monkey. J Comp Neurol 298:129–156

    CAS  PubMed  Google Scholar 

  • Saito H, Yukie M, Tanaka K, Hikosaka K, Fukada Y, Iwai E (1986) Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. J Neurosci 6:145–157

    CAS  PubMed  Google Scholar 

  • Sakata H, Taira M, Murata A, Mine S (1995) Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. Cereb Cortex 5:429–438

    CAS  PubMed  Google Scholar 

  • Schiller PH, Stryker M, Cynader M, Berman N (1974) Response characteristics of single cells in the monkey superior colliculus following ablation or cooling of visual cortex. J Neurophysiol 37:181–194

    CAS  PubMed  Google Scholar 

  • Sillito AM, Grieve KL, Jones HE, Cudeiro J, Davis J (1995) Visual cortical mechanisms detecting focal orientation discontinuities. Nature 378:492–496

    Google Scholar 

  • Sommer MA, Wurtz RH (1998) Frontal eye field neurons orthodromically activated from the superior colliculus. J Neurophysiol 80:3331–3335

    CAS  PubMed  Google Scholar 

  • Sommer MA, Wurtz RH (2000) Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus. J Neurophysiol 83:1979–2001

    Google Scholar 

  • Sparks DL (1986) Translation of sensory signals into commands for control of saccadic eye movements: role of primate superior colliculus. Physiol Rev 66:118–171

    CAS  PubMed  Google Scholar 

  • Tanaka K, Hikosaka K, Saito H, Yukie M, Fukada Y, Iwai E (1986) Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey. J Neurosci 6:134–144

    CAS  PubMed  Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle D, Goodale M, Mansfield R (eds) Analysis of visual behavior. MIT Press, Cambridge, Mass, pp 549–586

  • Ungerleider LG, Desimone R, Galkin TW, Mishkin M (1984) Subcortical projections of area MT in the macaque. J Comp Neurol 223:368–386

    CAS  PubMed  Google Scholar 

  • Ungerleider LG, Desimone R (1986) Cortical connections of visual area MT in the macaque. J Comp Neurol 248:190–222

    CAS  PubMed  Google Scholar 

  • Van Essen DC, Maunsell JH (1980) Two-dimensional maps of the cerebral cortex. J Comp Neurol 191:255–281

    PubMed  Google Scholar 

  • Van Essen DC, Maunsell JH, Bixby JL (1981) The middle temporal visual area in the macaque: myeloarchitecture, connections, functional properties and topographic organization. J Comp Neurol 199:293–326

    Google Scholar 

  • Van Essen DC, Newsome WT, Maunsell JH (1984) The visual field representation in striate cortex of the macaque monkey: asymmetries, anisotropies, and individual variability. Vision Res 24:429–448

    Google Scholar 

  • Van Essen DC, Newsome WT, Maunsell JH, Bixby JL (1986) The projections from striate cortex (V1) to areas V2 and V3 in the macaque monkey: asymmetries, areal boundaries, and patchy connections. J Comp Neurol 244:451–480

    Google Scholar 

  • von der Heydt R, Peterhans E, Baumgartner G (1984) Illusory contours and cortical neuron responses. Science 224:1260–1262

    PubMed  Google Scholar 

  • Wallace MT, Wilkinson LK, Stein BE (1996) Representation and integration of multiple sensory inputs in primate superior colliculus. J Neurophysiol 76:1246–1266

    CAS  PubMed  Google Scholar 

  • Webster MJ, Bachevalier J, Ungerleider LG (1993) Subcortical connections of inferior temporal areas TE and TEO in macaque monkeys. J Comp Neurol 335:73–91

    CAS  PubMed  Google Scholar 

  • Whitlock DG, Nauta W (1956) Subcortical projections from the temporal neocortex in Macaca mulatta. J Comp Neurol 106:183–212

    Google Scholar 

  • Wilson ME, Toyne MJ (1970) Retino-tectal and cortico-tectal projections in Macaca mulatta. Brain Res 24:395–406

    Article  CAS  PubMed  Google Scholar 

  • Wurtz RH (1996) Vision for the control of movement. The Friedenwald lecture. Invest Ophthalmol Vis Sci 37:2130–2145

    CAS  PubMed  Google Scholar 

  • Youakim M, Bender DB, Baizer JS (2001) Vertical meridian representation on the prelunate gyrus in area V4 of macaque. Brain Res Bull 56:93–100

    Article  CAS  PubMed  Google Scholar 

  • Zeki SM (1969) Representation of central visual fields in prestriate cortex of monkey. Brain Res 14:271–291

    CAS  PubMed  Google Scholar 

  • Zeki SM (1978) The third visual complex of rhesus monkey prestriate cortex. J Physiol 277:245–272

    CAS  PubMed  Google Scholar 

  • Zipser K, Lamme VA, Schiller PH (1996) Contextual modulation in primary visual cortex. J Neurosci 16:7376–7389

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Karen Zernhelt-Wolf for skilled assistance with histology. Supported in part by grants EY02254 and NS32936 (D.B.B.), and MH42130 and the Whitehall Foundation (J.S.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Baizer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lock, T.M., Baizer, J.S. & Bender, D.B. Distribution of corticotectal cells in macaque. Exp Brain Res 151, 455–470 (2003). https://doi.org/10.1007/s00221-003-1500-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-003-1500-y

Keywords

Navigation