Skip to main content

Advertisement

Log in

Contributions of the orbitofrontal cortex to impulsive choice: interactions with basal levels of impulsivity, dopamine signalling, and reward-related cues

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Individual differences in impulsive decision-making may be critical determinants of vulnerability to impulse control disorders and substance abuse, yet little is known of their biological or behavioural basis. The orbitofrontal cortex (OFC) has been heavily implicated in the regulation of impulsive decision-making. However, lesions of the OFC in rats have both increased and decreased impulsivity in delay-discounting paradigms, where impulsive choice is defined as the selection of small immediate over larger delayed rewards.

Objectives

Reviewing the different methods used, we hypothesized that the effects of OFC inactivation on delay discounting may be critically affected by both subjects’ baseline level of impulsive choice and the presence or absence of a cue to bridge the delay between selection and delivery of the large reward.

Results

Here, we show that OFC inactivation increased impulsive choice in less impulsive rats when the delay was cued, but decreased impulsive choice in highly impulsive rats in an uncued condition.

Conclusions

Providing explicit environmental cues to signal the delay-to-reinforcement appears to change the way in which the OFC is recruited in the decision-making process in a baseline-dependent fashion. This change may reflect activation of the dopamine system, as intra-OFC infusions of dopamine receptor antagonists increased impulsive choice but only when the delay was cued.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ainslie G (1975) Specious reward: a behavioral theory of impulsiveness and impulse control. Psychol Bull 82:463–496

    Article  PubMed  Google Scholar 

  • Arnsten AF (2009) Toward a new understanding of attention-deficit hyperactivity disorder pathophysiology: an important role for prefrontal cortex dysfunction. CNS Drugs 23(Suppl 1):33–41

    Article  PubMed  Google Scholar 

  • Barbelivien A, Billy E, Lazarus C, Kelche C, Majchrzak M (2008) Rats with different profiles of impulsive choice behavior exhibit differences in responses to caffeine and d-amphetamine and in medial prefrontal cortex 5-HT utilization. Behav Brain Res 187:273–283

    Article  PubMed  Google Scholar 

  • Bechara A, Damasio H, Damasio AR, Lee GP (1999) Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. J Neurosci 19:5473–5481

    PubMed  Google Scholar 

  • Bechara A, Damasio H, Damasio AR (2000) Emotion, decision making and the orbitofrontal cortex. Cereb Cortex 10:295–307

    Article  PubMed  Google Scholar 

  • Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28:309–369

    Article  PubMed  Google Scholar 

  • Bolla KI, Eldreth DA, London ED, Kiehl KA, Mouratidis M, Contoreggi C, Matochik JA, Kurian V, Cadet JL, Kimes AS, Funderburk FR, Ernst M (2003) Orbitofrontal cortex dysfunction in abstinent cocaine abusers performing a decision-making task. Neuroimage 19:1085–1094

    Article  PubMed  Google Scholar 

  • Bradley C (1937) The behavior of children receiving benzedrine. Am J Psychiat, In, pp 577–585

    Google Scholar 

  • Cardinal RN, Robbins TW, Everitt BJ (2000) The effects of d-amphetamine, chlordiazepoxide, alpha-flupenthixol and behavioural manipulations on choice of signalled and unsignalled delayed reinforcement in rats. Psychopharmacology (Berl) 152:362–375

    Article  Google Scholar 

  • Cardinal RN, Pennicott DR, Sugathapala CL, Robbins TW, Everitt BJ (2001) Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science 292:2499–2501

    Article  PubMed  Google Scholar 

  • Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26(3):321–352

    Article  PubMed  Google Scholar 

  • Chudasama Y, Robbins TW (2003) Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex. J Neurosci 23:8771–8780

    PubMed  Google Scholar 

  • Coffey SF, Gudleski GD, Saladin ME, Brady KT (2003) Impulsivity and rapid discounting of delayed hypothetical rewards in cocaine-dependent individuals. Exp Clin Psychopharm 11:18–25

    Article  Google Scholar 

  • Cormier E (2008) Attention deficit/hyperactivity disorder: a review and update. J Pediatr Nurs 23:345–357

    Article  PubMed  Google Scholar 

  • Damasio AR (1994) Descartes’ error and the future of human life. Sci Am 271:144

    Article  PubMed  Google Scholar 

  • de Wit H, Enggasser JL, Richards JB (2002) Acute administration of d-amphetamine decreases impulsivity in healthy volunteers. Neuropsychopharmacol 27:813–825

    Article  Google Scholar 

  • Diergaarde L, Pattij T, Nawijn L, Schoffelmeer AN, De Vries TJ (2009) Trait impulsivity predicts escalation of sucrose seeking and hypersensitivity to sucrose-associated stimuli. Behav Neurosci 123:794–803

    Article  PubMed  Google Scholar 

  • Dunnett SB, Robbins TW (1992) The functional role of mesotelencephalic dopamine systems. Biol Rev Camb Philos Soc 67:491–518

    Article  PubMed  Google Scholar 

  • Evenden JL, Ryan CN (1996) The pharmacology of impulsive behaviour in rats: the effects of drugs on response choice with varying delays of reinforcement. Psychopharmacology (Berl) 128:161–170

    Article  Google Scholar 

  • Feldman DJ, Frank RA, Kehne JH, Flannery R, Brown D, Soni S, Byrd G, Shah S (1997) Mixed D2/5-HT2 antagonism differentially affects apomorphine- and amphetamine-induced stereotyped behavior. Pharmacol Biochem Behav 58:565–572

    Article  PubMed  Google Scholar 

  • Flagel SB, Akil H, Robinson TE (2009) Individual differences in the attribution of incentive salience to reward-related cues: implications for addiction. Neuropharmacology 56(Suppl 1):139–148

    Article  PubMed  Google Scholar 

  • Fleckenstein AE, Volz TJ, Riddle EL, Gibb JW, Hanson GR (2007) New insights into the mechanism of action of amphetamines. Annu Rev Pharmacol Toxicol 47:681–698

    Article  PubMed  Google Scholar 

  • Floresco SB, St. Onge JR, Ghods-Sharifi S, Winstanley CA (2008a) Cortico-limbic-striatal circuits subserving different forms of cost-benefit decision making. Cogn Affect Behav Neurosci 8:375–389

    Article  PubMed  Google Scholar 

  • Floresco S, Tse M, Ghods-Sharifi S (2008b) Dopaminergic and glutamatergic regulation of effort- and delay-based decision making. Neuropsychopharmacol 33:1966–1979

    Article  Google Scholar 

  • Goldstein RZ, Tomasi D, Alia-Klein N, Honorio Carrillo J, Maloney T, Woicik PA, Wang R, Telang F, Volkow ND (2009) Dopaminergic response to drug words in cocaine addiction. J Neurosci 29:6001–6006

    Article  PubMed  Google Scholar 

  • Hill RT (ed) (1970) Facilitation of conditioned reinforcement as a mechanism of psychomotor stimulation. Raven, New York

    Google Scholar 

  • Ho MY, Mobini S, Chiang TJ, Bradshaw CM, Szabadi E (1999) Theory and method in the quantitative analysis of “impulsive choice” behaviour: implications for psychopharmacology. Psychopharmacology (Berl) 146(4):362–372

    Article  Google Scholar 

  • Jones B, Mishkin M (1972) Limbic lesions and the problem of stimulus–reinforcement associations. Exp Neurol 36:362–377

    Article  PubMed  Google Scholar 

  • Kheramin S, Body S, Mobini S, Ho MY, Velázquez-Martinez DN, Bradshaw CM, Szabadi E, Deakin JF, Anderson IM (2002) Effects of quinolinic acid-induced lesions of the orbital prefrontal cortex on inter-temporal choice: a quantitative analysis. Psychopharmacology (Berl) 165(1):9–17

    Google Scholar 

  • Kheramin S, Body S, Ho MY, Velázquez-Martinez DN, Bradshaw CM, Szabadi E, Deakin JF, Anderson IM (2004) Effects of orbital prefrontal cortex dopamine depletion on inter-temporal choice: a quantitative analysis. Psychopharmacology (Berl) 175:206–214

    Article  Google Scholar 

  • Kosten TR, Scanley BE, Tucker KA, Oliveto A, Prince C, Sinha R, Potenza MN, Skudlarski P, Wexler BE (2006) Cue-induced brain activity changes and relapse in cocaine-dependent patients. Neuropsychopharmacol 31:644–650

    Article  Google Scholar 

  • Loos M, Pattij T, Janssen MC, Counotte DS, Schoffelmeer AN, Smit AB, Spijker S, van Gaalen MM (2010) Dopamine receptor D1/D5 gene expression in the medial prefrontal cortex predicts impulsive choice in rats. Cereb Cortex 20(5):1064–1070. doi:10.1093/cercor/bhp167

    Article  PubMed  Google Scholar 

  • Mazur JE (1997) Choice, delay, probability, and conditioned reinforcement. Anim Learn Behav 25:131–147

    Google Scholar 

  • Mobini S, Body S, Ho MY, Bradshaw CM, Szabadi E, Deakin JF, Anderson IM (2002) Effects of lesions of the orbitofrontal cortex on sensitivity to delayed and probabilistic reinforcement. Psychopharmacology (Berl) 160:290–298

    Article  Google Scholar 

  • Monterosso JR, Ainslie G, Xu J, Cordova X, Domier CP, London ED (2007) Frontoparietal cortical activity of methamphetamine-dependent and comparison subjects performing a delay discounting task. Hum Brain Mapp 28:383–393

    Article  PubMed  Google Scholar 

  • Oades RD (2008) Dopamine-serotonin interactions in attention-deficit hyperactivity disorder (ADHD). Prog Brain Res 172:543–565

    Article  PubMed  Google Scholar 

  • Oades RD, Halliday GM (1987) Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity. Brain Res 434:117–165

    PubMed  Google Scholar 

  • Ostlund SB, Balleine BW (2007) The contribution of orbitofrontal cortex to action selection. Ann N Y Acad Sci 1121:174–192

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic co-ordinates. Academic, Sydney

    Google Scholar 

  • Perry JL, Nelson SE, Carroll ME (2008) Impulsive choice as a predictor of acquisition of IV cocaine self-administration and reinstatement of cocaine-seeking behavior in male and female rats. Exp Clin Psychopharm 16:165–177

    Article  Google Scholar 

  • Phillips PEM, Stuber GD, Heien MLAV, Wightman RM, Carelli RM (2003) Subsecond dopamine release promotes cocaine seeking. Nature 422:614–618

    Article  PubMed  Google Scholar 

  • Robbins TW (1976) Relationship between reward-enhancing and stereotypical effects of psychomotor stimulant drugs. Nature 264:57–59

    Article  PubMed  Google Scholar 

  • Robinson TE, Flagel SB (2009) Dissociating the predictive and incentive motivational properties of reward-related cues through the study of individual differences. Biol Psychiatry 65:869–873

    Article  PubMed  Google Scholar 

  • Rogers RD, Everitt BJ, Baldacchino A, Blackshaw AJ, Swainson R, Wynne K, Baker NB, Hunter J, Carthy T, Booker E, London M, Deakin JF, Sahakian BJ, Robbins TW (1999) Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: evidence for monoaminergic mechanisms. Neuropsychopharmacol 20:322–339

    Article  Google Scholar 

  • Rolls ET, Hornak J, Wade D, McGrath J (1994) Emotion-related learning in patients with social and emotional changes associated with frontal lobe damage. J Neurol Neurosurg Psychiatry 57:1518–1524

    Article  PubMed  Google Scholar 

  • Rudebeck PH, Walton ME, Smyth AN, Bannerman DM, Rushworth MF (2006) Separate neural pathways process different decision costs. Nat Neurosci 9:1161–1168

    Article  PubMed  Google Scholar 

  • Scheres A, Lee A, Sumiya M (2008) Temporal reward discounting and ADHD: task and symptom specific effects. J Neural Transm 115:221–226

    Article  PubMed  Google Scholar 

  • Schoenbaum G, Setlow B, Ramus SJ (2003) A systems approach to orbitofrontal cortex function: recordings in rat orbitofrontal cortex reveal interactions with different learning systems. Behav Brain Res 146:19–29

    Article  PubMed  Google Scholar 

  • Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593–1599

    Article  PubMed  Google Scholar 

  • Shaham Y, Shalev U, Lu L, de Wit H, Stewart J (2003) The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology (Berl) 168:3–20

    Article  Google Scholar 

  • Tait DS, Brown VJ (2007) Difficulty overcoming learned non-reward during reversal learning in rats with ibotenic acid lesions of orbital prefrontal cortex. Ann NY Acad Sci 1121:407–420

    Article  PubMed  Google Scholar 

  • Takahashi YK, Roesch MR, Stalnaker TA, Haney RZ, Calu DJ, Taylor AR, Burke KA, Schoenbaum G (2009) The orbitofrontal cortex and ventral tegmental area are necessary for learning from unexpected outcomes. Neuron 62(2):269–280

    Article  PubMed  Google Scholar 

  • Tomie A, Aguado AS, Pohorecky LA, Benjamin D (1998) Ethanol induces impulsive-like responding in a delay-of-reward operant choice procedure: impulsivity predicts autoshaping. Psychopharmacology (Berl) 139(4):376–382

    Article  Google Scholar 

  • Tripp G, Wickens JR (2009) Neurobiology of ADHD. Neuropharmacology 57(7–8):579–589

    Article  PubMed  Google Scholar 

  • van Gaalen MM, van Koten R, Schoffelmeer AN, Vanderschuren LJ (2006) Critical involvement of dopaminergic neurotransmission in impulsive decision making. Biol Psychiat 60:66–73

    Article  PubMed  Google Scholar 

  • Volkow ND, Fowler JS, Wang GJ, Swanson JM, Telang F (2007) Dopamine in drug abuse and addiction: results of imaging studies and treatment implications. Arch Neurol 64(11):1575–1579

    Article  PubMed  Google Scholar 

  • Wade TR, de Wit H, Richards JB (2000) Effects of dopaminergic drugs on delayed reward as a measure of impulsive behavior in rats. Psychopharmacology (Berl) 150:90–101

    Article  Google Scholar 

  • Wallis JD (2007) Orbitofrontal cortex and its contribution to decision-making. Annu Rev Neurosci 30:31–56

    Article  PubMed  Google Scholar 

  • Williams BA, Dunn R (1991) Preference for conditioned reinforcement. J Exp Anal Behav 55:37–46

    Article  PubMed  Google Scholar 

  • Winstanley CA, Chudasama Y, Dalley JW, Theobald DE, Glennon JC, Robbins TW (2003a) Intra-prefrontal 8-OH-DPAT and M100907 improve visuospatial attention and decrease impulsivity on the five-choice serial reaction time task in rats. Psychopharmacology (Berl) 167:304–314

    Google Scholar 

  • Winstanley CA, Dalley JW, Theobald DE, Robbins TW (2003b) Global 5-HT depletion attenuates the ability of amphetamine to decrease impulsive choice on a delay-discounting task in rats. Psychopharmacology (Berl) 170:320–331

    Article  Google Scholar 

  • Winstanley CA, Theobald DE, Cardinal RN, Robbins TW (2004) Contrasting roles of basolateral amygdala and orbitofrontal cortex in impulsive choice. J Neurosci 24:4718–4722

    Article  PubMed  Google Scholar 

  • Winstanley CA, Theobald DE, Dalley JW, Robbins TW (2005) Interactions between serotonin and dopamine in the control of impulsive choice in rats: therapeutic implications for impulse control disorders. Neuropsychopharmacol 30:669–682

    Google Scholar 

  • Winstanley CA, Theobald DE, Dalley JW, Cardinal RN, Robbins TW (2006) Double dissociation between serotonergic and dopaminergic modulation of medial prefrontal and orbitofrontal cortex during a test of impulsive choice. Cereb Cortex 16:106–114

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants awarded to CAW from the Institute for Research into Gambling Disorders and grants to both CAW and SBF from the Canadian Institutes for Health Research (Canada). SBF is a Michael Smith Senior Research Scholar, and CAW is a Michael Smith Research Scholar and a CIHR New Investigator: these programs provide salary support to CAW and SBF.

Conflict of interest statement

No authors have any financial interests or conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fiona D. Zeeb or Catharine A. Winstanley.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Effects of intra-OFC infusion of DA receptor antagonists on choice behaviour in the Cue group. Visual comparison of the data indicate that high impulsive (HI) animals were less affected by infusions of either eticlopride (a) or SCH 23390 (b), whereas both eticlopride (c) or SCH 23390 (d) infusions increased impulsive choice in low impulsive (LI) animals. However, overall, the effects of eticlopride and SCH 23390 in HI or LI rats did not differ significantly from each other as analysed by ANOVA. Data shown are mean ± SEM (GIF 25 kb)

High resolution image (TIFF 8963 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeeb, F.D., Floresco, S.B. & Winstanley, C.A. Contributions of the orbitofrontal cortex to impulsive choice: interactions with basal levels of impulsivity, dopamine signalling, and reward-related cues. Psychopharmacology 211, 87–98 (2010). https://doi.org/10.1007/s00213-010-1871-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-1871-2

Keywords

Navigation