Skip to main content
Log in

Characterization of calcium/calmodulin-dependent protein kinase II activity in the nervous system of the lobster,Panulirus interruptus

  • Original Articles
  • Published:
Invertebrate Neuroscience

Abstract

Nervous system tissue fromPanulirus interruptus has an enzyme activity that behaves like calcium/calmodulin-dependent protein kinase II (CaM KII). This activity phosphorylates known targets of CaM KII, such as synapsin I and autocamtide 3. It is inhibited by a CaM KII-specific autoinhibitory domain peptide. In addition, this lobster brain activity displays calcium-independent activity after autophosphorylation, another characteristic of CaM KII. A cDNA from the lobster nervous system was amplified using polymerase chain reaction. The fragment was cloned and found to be structurally similar to CaM KII. Serum from rabbits immunized with a fusion protein containing part of this sequence immunoprecipitated a CaM KII enzyme activity and a family of phosphoproteins of the appropriate size for CaM KII subunits.

Lobster CaM KII activity is found in the brain and stomatogastric nervous system including the commissural ganglia, commissures, stomatogastric ganglion and stomatogastric nerve. Immunoblot analysis of these same regions also identifies bands at an apparent molecular weight characteristic of CaM KII.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barria, A., Muller, D., Derkach, V., Griffith, L. C. and Soderling, T. R. (1997) Regulatory phosphorylation of AMPA-type glutamate receptors by CaM KII during long-term potentiation.Science,276, 2042–2045.

    Article  PubMed  CAS  Google Scholar 

  • Bartelt, D. C., Fidel, S., Farber, L. H., Wolff, D. J. and Hammel, R. L. (1988) Calmodulin-dependent multifunctional protein kinase inAspergillus nidulans.Proc. Natl. Acad. Sci. USA,85, 3279–3283.

    Article  PubMed  CAS  Google Scholar 

  • Bass, M., Pant, H. C., Gainer, H. and Soderling, T. R. (1987) Calcium/calmodulin-dependent protein kinase II in squid synaptosomes.J. Neurochem.,49, 1116–1123.

    Article  PubMed  CAS  Google Scholar 

  • Calman, B. G., Andrews, A. W., Rissler, H. M., Edwards, S. C. and Battelle, B. A. (1996) Calcium/calmodulin-dependent protein kinase II and arrestin phosphorylation in Limulus eyes.J. Photochem. Photobiol. B,35, 33–44.

    Article  PubMed  CAS  Google Scholar 

  • Cho, K. O., Wall, J. B., Pugh, P. C., Ito, M., Mueller, S. A. and Kennedy, M. B. (1991) The α subunit of type II Ca2+/calmodulin-dependent protein kinase is highly conserved inDrosophila.Neuron,7, 439–450.

    Article  PubMed  CAS  Google Scholar 

  • Cleveland, D. W., Fischer, S. G., Kirschner, M. W. and Laemmli, U. K. (1977) Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis.J. Biol. Chem.,252, 1102–1106.

    PubMed  CAS  Google Scholar 

  • Czernik, A. J., Pang, D. T. and Greengard, P. (1987) Amino acid sequences surrounding the cAMP-dependent and calcium/calmodulin-dependent phosphorylation sites in rat and bovine synapsin I.Proc. Natl. Acad. Sci. USA,84, 7518–7522.

    Article  PubMed  CAS  Google Scholar 

  • Erondu, N. E. and Kennedy, M. B. (1985) Regional distribution of type II Ca2+/calmodulin-dependent protein kinase in rat brain.J. Neurosci.,5, 3270–3277.

    PubMed  CAS  Google Scholar 

  • Goldenring, J., Gonzalez, B., McGuire, J. S. J. and DeLorenzo, R. J. (1983) Purification and characterization of a calmodulin-dependent kinase from rat brain cytosol able to phosphorylate tubulin and microtubule-associated proteins.J. Biol. Chem.,258, 12632–12640.

    PubMed  CAS  Google Scholar 

  • Griffith, L. C. and Greenspan, R. J. (1993) The diversity of calcium/calmodulin-dependent protein kinase II isoforms inDrosophila is generated by alternative splicing of a single gene.J. Neurochem.,61, 1534–1537.

    Article  PubMed  CAS  Google Scholar 

  • Griffith, L. C. and Schulman, H. (1988) The multifunctional Ca2+/calmodulin-dependent protein kinase mediates Ca2+-dependent phosphorylation of tyrosine hydroxylase.J. Biol. Chem.,263, 9542–9549.

    PubMed  CAS  Google Scholar 

  • Griffith, L. C., Verselis, L. M., Aitken, K. M., Kyriacou, C. P. and Greenspan, R. J. (1993) Inhibition of calcium/calmodulin-dependent protein kinase inDrosophila disrupts behavioral plasticity.Neuron,10, 501–509.

    Article  PubMed  CAS  Google Scholar 

  • Griffith, L. C., Wang, J., Zhong, Y., Wu, C. F. and Greenspan, R. J. (1994) Calcium/calmodulin-dependent protein kinase II and potassium channel subunit Eag similarly affect plasticity inDrosophila.Proc. Natl. Acad. Sci. USA,91, 10044–10048.

    Article  PubMed  CAS  Google Scholar 

  • GuptaRoy, B. and Griffith, L. C. (1996) Functional heterogeneity of alternatively spliced isoforms ofDrosophila Ca2+/calmodulin-dependent protein kinase II.J. Neurochem.,66, 1282–1288.

    Article  PubMed  CAS  Google Scholar 

  • GuptaRoy, B., Marwaha, N., Pla, M., Wang, Z. and Griffith, L. C. (1998) Alternative splicing ofDrosophila calcium/calmodulin-dependent protein kinase II regulates substrate specificity.submitted.

  • Hanson, P. I., Kapiloff, M. S., Lou, L. L., Rosenfield, M. G. and Schulman, H. (1989) Expression of a multifunctional Ca2+/calmodulin-dependent protein kinase and mutational analysis of its autoregulation.Neuron,3, 59–70.

    Article  PubMed  CAS  Google Scholar 

  • Hanson, P. I. and Schulman, H. (1992) Neuronal Ca2+/calmodulin-dependent protein kinases.Annu. Rev. Biochem.,61, 559–601.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, M. B., McGuinness, T. and Greengard, P. (1983) A calcium/calmodulin-dependent protein kinase from mammalian brain that phosphorylates synapsin I: Partial purification and characterization.J. Neurosci.,3, 818–831.

    PubMed  CAS  Google Scholar 

  • Koch, T., Kroslak, T., Mayer, P., Raulf, E. and Hollt, V. (1997) Site mutation in the rat mu-opioid receptor demonstrates the involvement of calcium/calmodulin-dependent protein kinase II in agonist-mediated desensitization.J. Neurochem.,69, 1767–1770.

    Article  PubMed  CAS  Google Scholar 

  • LeMasson, G., Marder, E. and Abbott, L.F. (1993) Activity-dependent regulation of conductances in model neurons.Science,259, 1915–1917.

    Article  PubMed  CAS  Google Scholar 

  • Lin, C. R., Kapiloff, M. S., Durgerian, S., Tatemoto, K., Russo, A. F., Hanson, P., Schulman, H. and Rosenfeld, M. G. (1987) Molecular cloning of a brain-specific calcium/calmodulin-dependent protein kinase.Proc. Natl. Acad. Sci. USA,84, 5962–5966.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Z., Golowasch, J., Marder, E. and Abbott, L. F. (1997) A model neuron with activity-dependent conductances regulated by multiple calcium sensors.J. Neurosci.,18, 2309–2320.

    Google Scholar 

  • Malinow, R., Schulman, H. and Tsien, R. W. (1989) Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP.Science,245, 862–866.

    Article  PubMed  CAS  Google Scholar 

  • Marder, E., Abbott, L. F., Turrigiano, G. G., Liu, Z. and Golowasch, J. (1996) Memory from the dynamics of intrinsic membrane currents.Proc. Natl. Acad. Sci. USA,93, 13481–13486.

    Article  PubMed  CAS  Google Scholar 

  • Marder, E. and Calabrese, R. L. (1996) Principles of rhythmic motor pattern generation.Physiol. Rev.,76, 687–717.

    PubMed  CAS  Google Scholar 

  • Miller, S. G. and Kennedy, M. B. (1985) Distinct forebrain and cerebellar isozymes of type II Ca2+/calmodulin-dependent protein kinase associate differently with the postsynaptic density fraction.J. Biol. Chem.,260, 9039–9046.

    PubMed  CAS  Google Scholar 

  • Miller, S. G. and Kennedy, M. B. (1986) Regulation of brain type II Ca2+/calmodulin-dependent protein kinase by autophosphorylation: a Ca2+-triggered molecular switch.Cell,44, 861–870.

    Article  PubMed  CAS  Google Scholar 

  • Miller, S. G., Patton, B. L. and Kennedy, M. B. (1988) Sequences of autophosphorylation sites in neuronal type II CaM kinase that control Ca2+-independent activity.Neuron,1, 593–604.

    Article  PubMed  CAS  Google Scholar 

  • Ohsako, S., Nishida, Y., Ryo, H. and Yamauchi, T. (1993) Molecular characterization and expression of theDrosophila Ca2+/calmodulin-dependent protein kinase II gene.J. Biol. Chem.,268, 2052–2062.

    PubMed  CAS  Google Scholar 

  • Omkumar, R. V., Kiely, M. J., Rosenstein, A. J., Min, K. T. and Kennedy, M. B. (1996) Identification of a phosphorylation site for calcium/calmodulin dependent protein kinase II in the NR2B subunit of the N-methyl-D-aspartate receptor.J. Biol. Chem.,271, 31670–31678.

    Article  PubMed  CAS  Google Scholar 

  • Ouyang, Y., Kantor, D., Harris, K. M., Schuman, E. M. and Kennedy, M. B. (1997) Visualization of the distribution of autophosphorylated calcium/calmodulin-dependent protein kinase II after tetanic stimulation in the CA1 area of the hipocampus.J. Neurosci.,17, 5416–5427.

    PubMed  CAS  Google Scholar 

  • Pausch, M. H., Kaim, D., Kunisawa, R., Admon, A. and Thorner, J. (1991) Multiple Ca2+/calmodulin-dependent protein kinase genes in a unicellular eukaryote.EMBO J,10, 1511–1522.

    PubMed  CAS  Google Scholar 

  • Saitoh, T. and Schwartz, J. H. (1985) Phosphorylation-dependent translocation of a Ca2+/calmodulin-dependent protein kinase produces an autonomous enzyme inAplysia neurons.J. Cell Biol.,100, 835–842.

    Article  PubMed  CAS  Google Scholar 

  • Schulman, H. (1984) Phosphorylation of microtubule-associated proteins by a Ca2+/calmodulin-dependent protein kinase.J. Cell Biol.,99, 11–19.

    Article  PubMed  CAS  Google Scholar 

  • Schworer, C. M., Colbran, R. J., Keefer, J. R. and Soderling, T. R. (1988) Ca2+/calmodulin-dependent protein kinase II: Identification of a regulatory autophosphorylation site adjacent to the inhibitory and calmodulin-binding domains.J. Biol. Chem.,263, 13486–13489.

    PubMed  CAS  Google Scholar 

  • Silva, A. J., Paylor, R., Wehner, J. and Tonegawa, S. (1992a) Impaired spatial learning in α-calcium-calmodulin-dependent protein kinase II mutant mice.Science,257, 206–211.

    Article  PubMed  CAS  Google Scholar 

  • Silva, A. J., Stevens, C. F., Tonegawa, S. and Wang, Y. D. (1992b) Deficient long-term potentiation in a-calmodulin-dependent kinase II mutant mice.Science,257, 201–206.

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan, M., Edman, C. F. and Schulman, H. (1994) Alternative splicing introduces a nuclear localization signal that targets multifunctional CaM kinase into the nucleus.J. Cell Biol.,126, 839–852.

    Article  PubMed  CAS  Google Scholar 

  • Thiel, G., Czernik, A. J., Gorelick, F., Nairn, A. C. and Greengard, P. (1988) Ca2+/calmodulin-dependent protein kinase II: Identification of threonine-286 as the autophosphorylation site in the α subunit associated with the generation of Ca2+-independent activity.Proc. Natl. Acad. Sci. USA,85, 6337–6341.

    Article  PubMed  CAS  Google Scholar 

  • Turrigiano, G., Abbott, L. F. and Marder, E. (1994) Activity-dependent changes in the intrinsic properties of cultured neurons.Science,264, 974–977.

    Article  PubMed  CAS  Google Scholar 

  • Turrigiano, G. G., LeMasson, G., and Marder, E. (1995) Selective regulation of current densities underlies spontaneous changes in the activity of cultured neurons.J. Neurosci.,15, 3640–3652.

    PubMed  CAS  Google Scholar 

  • Wang, J., Renger, J., Griffith, L. C., Greenspan, R. J. and Wu, C. F. (1994) Concomitant alterations of physiological and developmental plasticity at CaM kinase II-inhibited synapses inDrosophila.Neuron,13, 1373–1384.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z., Palmer, G., and Griffith, L. C. (1997) Regulation ofDrosophila Ca2+/calmodulin-dependent protein kinase II by autophosphorylation analyzed by site-directed mutatgenesis.J. Neurochem.,71, 378–87.

    Article  Google Scholar 

  • Yakel, J. L., Vissavajjhala, P., Derkach, V. A., Brickey, D. A. and Soderling, T. R. (1995) Identification of a Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in non-N-methyl-D-aspartate glutamate receptors.Proc. Natl. Acad. Sci. USA,92, 1376–1380.

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi, T. and Fujisawa, H. (1983) Purification and characterization of the brain calmodulin-dependent protein kinase (kinase II), which is involved in the activation of tryptophan 5-monooxygenase.Eur. J. Biochem.,132, 15–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle D. Withers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Withers, M.D., Kennedy, M.B., Marder, E. et al. Characterization of calcium/calmodulin-dependent protein kinase II activity in the nervous system of the lobster,Panulirus interruptus . Invertebrate Neuroscience 3, 335–345 (1998). https://doi.org/10.1007/BF02577693

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02577693

Key Words

Navigation