Skip to main content
Log in

Extensive monosynaptic inhibition of ventral respiratory group neurons by augmenting neurons in the Bötzinger complex in the cat

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Axonal projections and synaptic connectivity of expiratory Bötzinger neurons with an augmenting firing pattern (Bot-Aug neurons) to neurons in the ipsilateral ventral respiratory group (VRG) were studied in anaesthetized cats. Antidromic mapping revealed extensive axonal arborizations of Bot-Aug neurons (24 of 45) to the rostral or caudal VRG, with some having arbors in both regions. Of 234 pairs of neurons studied with intracellular recording and spike-triggered averaging, monosynaptic inhibitory postsynaptic potentials (IPSPs) were evoked in 49/221 VRG neurons by 38/98 Bot-Aug neurons. The highest incidence of monosynaptic inhibition was found in inspiratory bulbospinal neurons (10 of 23 tested). Evidence was also found for monosynaptic inhibition, by a separate group of Bot-Aug neurons, of expiratory bulbospinal neurons (12/58), while excitatory postsynaptic potentials (EPSPs) were identified in another two of these neurons. In addition, monosynaptic IPSPs were recorded from 13 of 53 identified laryngeal motoneurons, and from 14 of 100 respiratory propriobulbar neurons. Presumptive disynaptic IPSPs were recorded from 11 of the 221 VRG neurons. We conclude that Bot-Aug neurons exert widespread inhibition on all major neuron categories in the ipsilateral VRG, and should be regarded as an important element in shaping the spatiotemporal output pattern of both respiratory motoneurons and premotor neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arita H, Kogo N, Koshiya N (1987) Morphological and physiological properties of caudal expiratory neurons of the cat. Brain Res 401:258–266

    Article  PubMed  CAS  Google Scholar 

  • Ballantyne D, Richter DW (1984) Post-synaptic inhibition of bulbar inspiratory neurons in the cat. J Physiol (London) 348:67–84

    CAS  Google Scholar 

  • Ballantyne D, Richter DW (1986) The non-uniform character of expiratory synaptic activity in expiratory bulbospinal neurons of the cat. J Physiol (London) 370:433–456

    CAS  Google Scholar 

  • Barillot JC, Bianchi AL, Gogan P (1984) Laryngeal respiratory motoneurons: morphological and electrophysiological evidence of separate sites for excitatory and inhibitory synaptic inputs. Neurosci Lett 47:107–112

    Article  PubMed  CAS  Google Scholar 

  • Bartlett Jr D (1989) Respiratory functions of the larynx. Physiol Rev 69:33–57

    PubMed  Google Scholar 

  • Bianchi AL (1971) Localisation et étude des neurones respiratoires bulbaires: mise en jeu antidromique par stimulation spinale ou vagale. J Physiol (Paris) 63:5–40

    CAS  Google Scholar 

  • Bianchi AL (1985) Interconnective pathways between respiratory groups of neurons: results from electrophysiological experiments as opposed to anatomical tracing studies. In: Bianchi AL, Denavit-Saubie M (eds) Neurogenesis of central respiratory rhythm: electrophysiological, pharmacological and clinical aspects. MTP Press Ltd, Lancaster pp 108–116

    Google Scholar 

  • Bianchi AL, Barillot JC (1982) Respiratory neurons in the region of the retrofacial nucleus: pontile, medullary, spinal and vagal projections. Neurosci Lett 31:277–282

    Article  PubMed  CAS  Google Scholar 

  • Bianchi AL, Grélot L, Iscoe S, Remmers JE (1988) Electrophysiological properties of rostral medullary respiratory neurons in the cat: an intracellular study. J Physiol (London) 407:293–310

    CAS  Google Scholar 

  • Bieger D, Hopkins DA (1987) Viscerotopic representation of the upper alimentary tract in the medulla oblongata in the rat: the nucleus ambiguus. J Comp Neurol 262:546–562

    Article  PubMed  CAS  Google Scholar 

  • Budzinska K, von Euler C, Kao F, Pantaleo T, Yamamoto Y (1985) Effects of graded focal cold block in the rostral area of the medulla. Acta Physiol Scand 124:329–340

    Article  PubMed  CAS  Google Scholar 

  • Bystrzycka EK (1980) Afferent projections to the dorsal and ventral respiratory nuclei in the medulla oblongata of the cat studied by the hoseradish peroxdase technique. Brain Res 185:59–66

    Article  PubMed  CAS  Google Scholar 

  • Donoghue S, Garcia M, Jordan D, Spyer KM (1982) The brainstem projections of pulmonary stretch afferent neurons in cats and rabbits. J Physiol (London) 322:353–363

    CAS  Google Scholar 

  • Ezure K, Manabe M (1988) Decrementing expiratory neurons of the Bötzinger complex. II. Direct inhibitory synaptic linkage with ventral respiratory group neurons. Exp Brain Res 72:159–166

    Article  PubMed  CAS  Google Scholar 

  • Fedorko L, Lipski J (1981) Axonal projection of the rostral medullary expiratory neurons studied by antidromic activation. Neurosci Lett Suppl 7:S206

    Google Scholar 

  • Fedorko L, Merrill EG (1984) Axonal projections from rostral expiratory neurons of Bötzinger complex to medulla and spinal cord. J Physiol (London) 350:487–496

    CAS  Google Scholar 

  • Fedorko L, Duffin J, England S (1989) Inhibition of inspiratory neurons of the nucleus retroambigualis by expiratory neurons of the Bötzinger complex. Exp Neurol 106:74–77

    Article  PubMed  CAS  Google Scholar 

  • Feldman JL (1986) Neurophysiology of breathing in the mammals. In: Bloom FE (ed) Handbook of physiology: the nervous system, Sect I, Vol IV. American Physiological Society, Bethesda MD, pp 463–524

    Google Scholar 

  • Feldman JL, McCrimmon DR, Speck DF (1984) Effect of synchronous activation of medullary inspiratory bulbo-spinal neurons on the phrenic nerve discharge in cat. J Physiol (London) 347:241–254

    CAS  Google Scholar 

  • Grélot L, Barillot JC, Bianchi AL (1989) Pharyngeal motoneurones: respiratory-related activity and responses to laryngeal afferents in the decerebrate cat. Exp Brain Res 78:336–344

    PubMed  Google Scholar 

  • Hilaire G, Monteau R, Bianchi AL (1984) A cross-correlation study of interactions among respiratory neurons of dorsal, ventral and retrofacial groups in cat medulla. Brain Res 302:19–31

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt JR (1974) Intracellular activity of medullary respiratory neurons. Exp Neurol 45:298–313

    Article  PubMed  CAS  Google Scholar 

  • Hwang Q, St. John WM (1988) Respiratory neural activities after caudal-to-rostral ablation of medullary regions. J Appl Physiol 64:1405–1411

    Article  Google Scholar 

  • Jankowska E, Roberts WJ (1972) An electrophysiological demonstration of the axonal projections of single spinal interneurons in the cat. J Physiol (London) 222:597–622

    CAS  Google Scholar 

  • Jiang C, Lipski J (1989) Monosynaptic inhibition of respiratory neurons in the ventral respiratory group from augmenting expiratory neurons of the ipsilateral Bötzinger complex. Proc XXXI Intern Congress Physiol Sci 17:442

    Google Scholar 

  • Kalia M, Feldman JL, Cohen MI (1979) Afferent projections to inspiratory neuronal region of the ventrolateral nucleus of the tractus solitarius in the cat. Brain Res 171:135–141

    Article  PubMed  CAS  Google Scholar 

  • Kirkwood PA (1979) On the use and interpretation of cross-correlation measurements in the mammalian central nervous system. J Neurosci Meth 1:107–132

    Article  CAS  Google Scholar 

  • Kubin L, Lipski J (1980) Properties of rostral NRA expiratory neurons projecting to the controlateral NTS group. Neurosci Lett 5:S141

    Google Scholar 

  • Lindsey BG, Segers L, Shannon R (1987) Functional associations among simultaneously monitored lateral medullary respiratory neurons in the cat. II. Evidence for inhibitory actions of expiratory neurons. J Neurophysiol 57:1101–1117

    PubMed  CAS  Google Scholar 

  • Lispki J (1981) Antidromic activation of neurons as an analytic tool in the study of the central nervous system. J Neurosci Meth 4:1–32

    Article  Google Scholar 

  • Lipski J, Merrill EG (1980) Electrophysiological demonstration of the projection from expiratory neurons in the rostral medulla to contralateral dorsal respiratory group. Brain Res 197:521–524

    Article  PubMed  CAS  Google Scholar 

  • Lipski J, Kubin L, Jodkowkski J (1983) Synaptic action of Rß neurons on phrenic motoneurons studied with spike-triggered averaging. Brain Res 288:105–118

    Article  PubMed  CAS  Google Scholar 

  • Lipski J, Trzebski A, Chodobska J, Kruk P (1984) Effects of carotid chemoreceptor excitation on medullary expiratory neurons in cats. Respir Physiol 57:279–291

    Article  PubMed  CAS  Google Scholar 

  • Long SE, Duffin J (1986) The neuronal determinants of respiratory rhythm. Prog Neurobiol 27:101–182

    Article  PubMed  CAS  Google Scholar 

  • Manabe M, Ezure K (1988) Decrementing expiratory neurons of the Bötzinger complex. I. Response to lung inflation and axonal projection. Exp Brain Res 72:150–158

    Article  PubMed  CAS  Google Scholar 

  • Mateika JH, Duffin J (1989) The connections from Bötzinger expiratory neurons to upper cervical inspiratory neurons in the cat. Exp Neurol 104:138–146

    Article  PubMed  CAS  Google Scholar 

  • Merrill EG (1970) The lateral respiratory neurons of the medulla: their associations with the nucleus ambiguus, nucleus retroambigualis, the spinal accessory nucleus and the spinal cord. Brain Res 24:11–28

    Article  PubMed  CAS  Google Scholar 

  • Merrill EG (1974) Finding a respiratory function for the medullary respiratory neurons. In: Bellairs R, Gray EG (eds) Essays on the nervous system. Clarendon Press, Oxford, pp 451–486

    Google Scholar 

  • Merrill EG (1981) Where are the real respiratory neurons? Fed Proc 40:2389–2394

    PubMed  CAS  Google Scholar 

  • Merrill EG, Fedorko L (1984) Monosynaptic inhibition of phrenic motoneurons: a descending projection from Bötzinger neurons. J Neurosci 4:2350–2353

    PubMed  CAS  Google Scholar 

  • Merrill EG, Lipski J, Kubin L, Fedorko L (1983) Origin of expiratory inhibition of nucleus tractus solitarius inspiratory neurons. Brain Res 263:43–50

    Article  PubMed  CAS  Google Scholar 

  • Miller AD, Ezure K, Suzuki I (1985) Control of abdominal muscles by brainstem respiratory neurons in the cat. J Neurophysiol 54:155–167

    PubMed  CAS  Google Scholar 

  • Mitchell RA, Herbert DA (1974) The effect of carbon dioxide on the membrane potential of medullary respiratory neurons. Brain Res 74:345–349

    Article  Google Scholar 

  • Onimaru H, Arata A, Homma I (1988) Primary respiratory rhythm generator in the medulla of brainstem-spinal cord preparation from newborn rat. Brain Res 445:314–324

    Article  PubMed  CAS  Google Scholar 

  • Otake K, Sasaki H, Mannen H, Ezure K (1987) Morphology of expiratory neurons of the Bötzinger complex: an HRP study in the cat. J Comp Neurol 258:565–579

    Article  PubMed  CAS  Google Scholar 

  • Rapoport S, Susswein A, Uchino Y, Wilson VJ (1977) Synaptic actions of individual vestibular neurones on cat neck motoneurones. J Physiol (London) 272:367–382

    CAS  Google Scholar 

  • Richter DW, Ballantyne D, Remmers JE (1986) How is the respiratory rhythm generated? A model. NIPS 1:109–112

    Google Scholar 

  • Sasaki H, Otake K, Mannen H, Ezure K, Manabe M (1989) Morphology of augmenting inspiratory neurons of the ventral respiratory group in the cat. J Comp Neurol 282:157–168

    Article  PubMed  CAS  Google Scholar 

  • Sears TA (1964) The slow potentials of thoracic respiratory motoneurons and their relation to breathing. J Physiol (London) 175:404–424

    CAS  Google Scholar 

  • Smith JC, Morrison DE, Ellenberger HH, Otto MR, Feldman JL (1989) Brainstem projections to the major respiratory neuron populations in the medulla of the cat. J Comp Neurol 281:69–96

    Article  PubMed  CAS  Google Scholar 

  • Speck DF, Feldman JL (1982) The effects of microstimulation and microlesions in the ventral and dorsal respiratory groups in the medulla of cat. J Neurosci 2:744–757

    PubMed  CAS  Google Scholar 

  • Von Euler C (1986) Brain stem mechanisms for generation and control of breathing pattern. In: Handbook of physiology, Sect 3. The respiratory system, Vol 2, Part 1. American Physiol Soc, Bethesda, pp 1–68

    Google Scholar 

  • Watt DGD, Stauffer EK, Taylor A, Reinking R, Stuart DG (1976) Analysis of muscle receptor connections by spike-triggered averaging. I. Spindle primary and tendon organ afferents. J Neurophysiol 39:1375–1392

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, C., Lipski, J. Extensive monosynaptic inhibition of ventral respiratory group neurons by augmenting neurons in the Bötzinger complex in the cat. Exp Brain Res 81, 639–648 (1990). https://doi.org/10.1007/BF02423514

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02423514

Key words

Navigation