Skip to main content
Log in

Ataxia-telangiectasia and the ATM gene: Linking neurodegeneration, immunodeficiency, and cancer to cell cycle checkpoints

  • Special Article
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Defects in regulation of the cellular life cycle may lead to premature cellular death or malignant transformation. Most of the proteins known to be involved in these processes are mediators of mitogenic signals or components of the cell cycle machinery. It has recently become evident, however, that systems responsible for ensuring genome stability and integrity are no less important in maintaining the normal life cycle of the cell. These systems include DNA repair enzymes and a recently emerging group of proteins that alert growth regulating mechanisms to the presence of DNA damage. These signals slow down the cell cycle while DNA repair ensues. Ataxia-telangiectasia (A-T) is a genetic disorder whose clinical and cellular phenotype points to a defect in such a signaling system. A-T is characterized by neurodegeneration, immunodeficiency, radiosensitivity, cancer predisposition, and defective cell cycle checkpoints. The responsible gene, ATM, was recently cloned and sequenced. ATM encodes a large protein with a region highly similar to the catalytic domain of PI 3-kinases. The ATM protein is similar to a group of proteins in various organisms which are directly involved in the cell cycle response to DNA damage. It is expected to be part of a protein complex that responds to a specific type of DNA strand break by conveying a regulatory signal to other proteins. Interestingly, the immune and nervous systems, which differ markedly in their proliferation rates, are particularly sensitive to the absence of ATM function. The identification of the ATM gene highlights the growing importance of signal transduction initiated in the nucleus rather than in the external environment, for normal cellular growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gatti RA, Boder E, Vinter HV, Sparkes RS, Norman A, Lange K: Ataxia-telangiectasia: An interdisciplinary approach to pathogenesis. Medicine 70:99–117, 1991

    PubMed  Google Scholar 

  2. Swift M, Heim RA, Lench NJ: Genetic aspects of ataxia telangiectasia. Adv Neurol 61:115–125, 1993

    PubMed  Google Scholar 

  3. Taylor AMR, Byrd PJ, McConville CM, Thacker S: Genetic and cellular features of ataxia telangiectasia. Int J Radiat Biol 65:65–70, 1994

    PubMed  Google Scholar 

  4. Shiloh, Y: Ataxia-telangiectasia: Closer to unraveling the mystery. Eur J Hum Genet 3:116–138, 1995

    PubMed  Google Scholar 

  5. Waldmann TA: Immunological abnormalities in ataxia-telangiectasia.In Ataxia-Telangiectasia—A Cellular and Molecular Link Between Cabcer, Neuropathology and Immune Deficiency, BA Bridges, DG Harnden (eds). Chichester, John Wiley and Sons, 1982, pp 37–51

    Google Scholar 

  6. Fiorilli M, Businco L, Pandolfi F, Paganelli R, Russo G, Aiuti F: Heterogeneity of immunological abnormalities in ataxia telangiectasia. J Clin Immunol 3:135–141, 1983

    PubMed  Google Scholar 

  7. Aucouturier P, Bremard-Oury C, Griscelli C, Berthier M, Preud'homme JL: Serum IgG subclass deficiency in ataxia-telangiectasia. Clin Exp Immunol 68:392–396, 1987

    PubMed  Google Scholar 

  8. Morrell D, Chase CL, Swift M: Cancers in 44 families with ataxia-telangiectasia. Cancer Genet Cytogenet 50:119–123, 1990

    PubMed  Google Scholar 

  9. Cunliffe PN, Mann JR, Cameron AH, Roberts KD: Radiosensitivity in ataxia telangiectasia. Br J Radiol 48:374–376, 1975

    PubMed  Google Scholar 

  10. Lehmann AR: The cellular and molecular responses of ataxia-telangiectasia cells to DNA damage.In Ataxia-Telangiectasia—A Cellular and Molecular Link Between Cancer, Neuropathology and Immune Deficiency, BA Bridges, DG Harnden (eds). Chichester, John Wiley & Sons, 1982, pp 83–102

    Google Scholar 

  11. Shiloh Y, Tabor E, Becker Y: In-vitro phenotype of A-T fibroblast strains: clues to the nature of the “A-T DNA lesion” and the molecular defect in A-T.In Ataxia-Telangiectasia: Genetics Neuropathology and Immunology of a Degenerative Disease of Childhood, RA Gatti, M Swift (eds). New York, Alan R. Liss, 1985, pp 111–121

    Google Scholar 

  12. Taylor AMR: Cytogenetics in ataxia-telangiectasia.In Ataxia-Telangiectasia—A Cellular and Molecular Link between Cancer, Neuropathology and Immune Deficiency, BA Bridges, DG Harnden (eds). Chichester, John Wiley & Sons, 1982, pp 53–81

    Google Scholar 

  13. Kojis TL, Gatti RA, Sparkes RS: The cytogenetics of ataxia telangiectasia. Cancer Genet Cytogenet 56:143–156, 1991

    PubMed  Google Scholar 

  14. Taylor AMR, Butterworth SV: Clonal evolution of T-cell chronic lymphocytic leukemia in a patient with ataxia-telangiectasia. Int J Cancer 37:511–516, 1986

    PubMed  Google Scholar 

  15. Thick J, Sherrington PD, Fisch P, Taylor AMR, Rabbitts TH: Molecular analysis of a new translocation, t(X;14)(q28;q11), in a premalignancy and in leukaemia associated with ataxia telangiectasia. Genes Chromosomes Cancer 5:321–325, 1992

    PubMed  Google Scholar 

  16. Sherrington PD, Fisch P, Taylor AMR, Rabbitts TH: Clonal evolution of malignant and non-malignant T cells carrying t(14;14) and t(X;14) in patients with ataxia telangiectasia. Oncogene 9:2377–2381, 1994

    PubMed  Google Scholar 

  17. Swift M, Reitnauer PJ, Morrell D, Chase CL: Breast and other cancers in families with ataxia-telangiectasia. N Engl J Med 316:1289–1294, 1987

    PubMed  Google Scholar 

  18. Swift M, Morrell D, Massey RB, Chase CL: Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl J Med 325:1831–1836, 1991

    PubMed  Google Scholar 

  19. Easton DF: Cancer risks in A-T heterozygotes. Int J Radiat Biol 66:S177-S182, 1994

    PubMed  Google Scholar 

  20. Arlett CF, Priestley A: An assessment of the radiosensitivity of ataxia-telangiectasia heterozygotes.In Ataxia-Telangiectasia: Genetics, Neuropathology and Immunology of a Degenerative Disease of Childhood, Gatti RA, Swift M (eds). New York, Alan R. Liss, 1985, pp 101–109

    Google Scholar 

  21. Rudolph NS, Nagasawa H, Little JB, Latt SA: Identification of ataxia-telangiectasia heterozygotes by flow cytometric analysis of X-ray damage. Mutat Res 211:19–29, 1989

    PubMed  Google Scholar 

  22. Scott D, Jones LA, Elyan SAG, Spreadborough A, Cowan R, Ribiero G: Identification of A-T heterozygotes.In Ataxia-Telangiectasia, RA Gatti, RB Painter (eds). NATO ASI Series, Series H: Cell Biology, Vol 77. New York, Springer-Verlag, 1993, pp 101–116

    Google Scholar 

  23. Shiloh Y, Tabor E, Becker Y: Abnormal response of ataxiatelangiectasia cells to agents that break the deoxyribose moiety of DNA via a targeted free radical mechanism. Carcinogenesis 1317–1322, 1983

  24. Cornforth MN, Bedford JS: On the nature of a defect in cells from individuals with ataxia-telangiectasia. Science 227:1589–1591, 1985

    PubMed  Google Scholar 

  25. Houldsworth J, Lavin MF: Effect of ionizing radiation on DNA synthesis in ataxia telangiectasia cells. Nucleic Acids Res 8:3709–3720, 1980

    PubMed  Google Scholar 

  26. Painter RB: Altered DNA synthesis in irradiated and unirradiated ataxia-telangiectasia cells.In Ataxia-Telangiectasia: Genetics, Neuropathology and Immunology of a Degenerative Disease of Childhood, RA Gatti, M Swift (eds). New York, Alan R. Liss, 1985, pp 89–100

    Google Scholar 

  27. Scott D, Zampetti-Bosseler F: Cell cycle dependence of mitotic delay in X-irradiated normal and ataxia-telangiectasia fibroblasts. Int J Radiat Biol 42:679–683, 1982

    Google Scholar 

  28. Rudolph NS, Latt SA: Flow cytometric analysis of X-ray sensitivity in ataxia-telangiectasia. Mutat Res 211:31–41, 1989

    PubMed  Google Scholar 

  29. Beamish H, Khanna KK, Lavin MF: Ionizing radiation and cell cycle progression in ataxia telangiectasia. Radiat Res 138:S130-S133, 1994

    PubMed  Google Scholar 

  30. Hartwell L, Kastan M: Cell cycle control and cancer. Science 266:1821–1828, 1994

    PubMed  Google Scholar 

  31. Carr AM: Radiation checkpoints in model systems. Int J Radiat Biol 66:S133-S139, 1994

    PubMed  Google Scholar 

  32. Kamb A: Cell cycle regulators and cancer. Trends Genet 11:136–140, 1995

    PubMed  Google Scholar 

  33. Murray AW: The genetics of cell cycle checkpoints. Curr Biol 5:5–11, 1995

    Google Scholar 

  34. Lydall D, Weinert T: Yeast checkpoint genes in DNA damage processing: Implications for repair and arrest. Science 270:1488–1491, 1995

    PubMed  Google Scholar 

  35. Cox LS, Lane DP: Tumor suppressor, kinases and clamps: How p53 regulates the cell cycle in response to DNA damage. BioEssays 17:501–508, 1995

    PubMed  Google Scholar 

  36. Kastan MB, Zhan Q, El-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fornace AJ: A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71:587–597, 1992

    PubMed  Google Scholar 

  37. Lu X, Lane DP: Differential induction of transcriptionally active p53 following UV or ionizing radiation: Defects in chromosome instability syndromes? Cell 75:765–778, 1993

    PubMed  Google Scholar 

  38. Khanna KK, Lavin MF: Ionizing radiation and UV induction of p53 protein by different pathways in ataxia-telangiectasia cells. Oncogene 8:3307–3312, 1993

    PubMed  Google Scholar 

  39. Lavin MF, Khanna KK, Beamish H, Teale B, Hobson K, Watters D: Defect in radiation signal transduction in ataxia-telangiectasia. Int J Radiat Biol 66:S151-S156, 1994

    PubMed  Google Scholar 

  40. Meyn MS, Strasfeld L, Allen C: Testing the role of p53 in the expression of genetic instability and apoptosis in ataxia-telangiectasia. Int J Radiat Biol 66:S141-S149, 1994

    PubMed  Google Scholar 

  41. Meyn MS: Ataxia-telangiectasia and cellular responses to DNA damage. Cancer Res 55:5991–6001, 1995

    PubMed  Google Scholar 

  42. Gatti RA, Berkel I, Boder E, Braedt G, Charmley P, Concannon P, Ersoy F, Foroud T, Jaspers NGJ, Lange K, Lathrop GM, Leppert M, Nakamura Y, O'Connel P, Paterson M, Salser W, Sanal O, Silver J, Sparkes RS, Susi E, Weeks DE, Wei S, White R, Yoder F: Localization of an ataxia- telangiectasia gene to chromosome 11q22-23. Nature 336:577–580, 1988

    PubMed  Google Scholar 

  43. McConville CM, Byrd PJ, Ambrose HJ, Taylor AMR: Genetic and physical mapping of the ataxia-telangiectasia locus on chromosome 11q22-23. Int J Radiat Biol 66:S45-S56, 1994

    PubMed  Google Scholar 

  44. Rotman G, Savitsky K, Vanagaite L, Bar-Shira A, Ziv Y, Gilad S, Uchenik V, Smith S, Shiloh Y: Physical and genetic mapping at the ATA/ATC locus on chromosome 11q22-23. Int J Radiat Biol 66:S63-S66, 1994

    PubMed  Google Scholar 

  45. Lange E, Borreson A-L, Chen X, Chessa L, Chiplunkar S, Concannon P, Dandekar S, Gerken S, Lange K, Liang T, McConville C, Polakow J, Porras O, Rotman G, Sanal O, Telatar M, Sheikhavandi S, Shiloh Y, Sobel E, Taylor M, Udar N, Uhrhammer N, Vanagaite L, Wang Z, Yang H-M, Yang L, Ziv Y, Gatti RA: Localization of an ataxia-telangiectasia gene to a 850 kb interval on chromosome 11q23.1 by linkage analysis of 176 families in an international consortium. Am J Hum Genet 57:112–119, 1995

    PubMed  Google Scholar 

  46. Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, Tagle DA, Smith S, Uziel T, Sfez S, Ashkenazi M, Pecker I, Frydman M, Harnik R, Patanjali SR, Simmons A, Clines GA, Sartiel A, Gatti RA, Chessa L, Sanal O, Lavin MF, Jaspers NGJ, Taylor AMR, Arlett CF, Miki T, Weissman S, Lovett M, Collins FS, Shiloh Y: A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268:1749–1753, 1995

    PubMed  Google Scholar 

  47. Savitsky K, Sfez S, Tagle D, Ziv Y, Sartiel A, Collins FS, Shiloh Y, Rotman G: The complete sequence of the coding region of the ATM gene reveals similarity to cell cycle regulators in different species. Hum Mol Genet 4:2025–2032, 1995

    PubMed  Google Scholar 

  48. Uziel T, Savitsky K, Platzer M, Ziv Y, Helbitz T, Nehls M, Boehm T, Rosenthal A, Shiloh Y, Rotman G: Genomic organization of the ATM gene. Genomics 33:317–320, 1996

    PubMed  Google Scholar 

  49. Zakian VA: ATM-related genes: What do they tell us about functions of the human gene? Cell 82:685–687, 1995

    PubMed  Google Scholar 

  50. Keith CT, Schreiber SL: PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints. Science 270:50–51, 1995

    PubMed  Google Scholar 

  51. Greenwell PW, Kronmal SL, Porter SE, Gassenhuber J, Obermaier B, Petes TD: TEL1, a gene involved in controlling telomere length in Saccharomyces cerevisiae, is homologous to the human ataxia telangiectasia (ATM) gene. Cell 82:823–829, 1995

    PubMed  Google Scholar 

  52. Morrow DM, Tagle DA, Shiloh Y, Collins FS, Hieter P: TEL1, a Saccharomyces cerevisiae homologue of the human gene mutated in ataxia telangiectasia, is functionally related to the yeast checkpoint gene MEC1/ESR1. Cell 82:831–840, 1995

    PubMed  Google Scholar 

  53. Pandita TK, Pathak S, Geard C: Chromosome end associations, telomeres and telomerase activity in ataxia telangiectasia cells. Cytogenet Cell Genet 71:86–93, 1995

    PubMed  Google Scholar 

  54. Hastie ND, Dempster M, Dunlop MG, Thompson AM, Green DK, Allshire RC: Telomere reduction in human colorectal carcinoma and with ageing. Nature 346:866–868, 1990

    PubMed  Google Scholar 

  55. Harley CB, Futcher AB, Greider CW: Telomeres shorten during aging of human fibroblasts. Nature 345:458–460, 1990

    PubMed  Google Scholar 

  56. Weinert TA, Kiser GL, Hartwell LH: Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev 8:652–665, 1994

    PubMed  Google Scholar 

  57. Kato R, Ogawa H: An essential gene, ESR1, is required for mitotic cell growth, DNA repair and meiotic recombination in Saccharomyces cerevisiae. Nucleic Acids Res 22:3104–3112, 1994

    PubMed  Google Scholar 

  58. Allen JB, Zhou Z, Siede W, Friedberg EC, Elledge SJ: The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. Genes Dev 8:2401–2415, 1994

    PubMed  Google Scholar 

  59. Paulovich AG, Hartwell LH: A checkpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage. Cell 82:841–847, 1995

    PubMed  Google Scholar 

  60. Al-Khodairy F, Carr AM: DNA repair mutants defining G2 checkpoint pathways in Schizosaccharomyces pombe. EMBO J 11:1343–1350, 1992

    PubMed  Google Scholar 

  61. Jimenez G, Yucel J, Rowley R, Subramani S: The rad3+ gene of Schizosaccharomyces pombe is involved in multiple checkpoint functions and in DNA repair. Proc Natl Acad Sci USA 89:4952–4956, 1992

    PubMed  Google Scholar 

  62. Enoch T, Carr AM, Nurse P: Fission yeast genes involved in coupling mitosis to completion of DNA replication. Genes Dev 6:2035–2046, 1992

    PubMed  Google Scholar 

  63. Al-Khodairy F, Fotou E, Sheldrick KS, Griffiths DJF, Lehmann AR, Carr AM: Identification and characterization of new elements involved in checkpoints and feedback controls in fission yeast. Mol Biol Cell 5:147–160, 1994

    PubMed  Google Scholar 

  64. Hari KL, Santerre A, Sekelsky JJ, McKim KS, Boyd JB, Hawley RS: The mei-41 gene of Drosophila melanogaster is functionally homologous to the human ataxia telangiectasia gene. Cell 82:815–821, 1995

    PubMed  Google Scholar 

  65. Boyd JB, Golino MD, Nguyen TD, Green MM: Isolation and characterization of X-linked mutants of Drosophila melanogaster which are sensitive to mutagens. Genetics 84:485–506, 1976

    PubMed  Google Scholar 

  66. Banga SS, Shenkar R, Boyd JB: Hypersensitivity of Drosophila mei-41 mutants to hydroxyurea is associated with reduced mitotic chromosome stability. Mutat Res 163:157–165, 1986

    PubMed  Google Scholar 

  67. Cimprich KA, Shin TB, Keith CT, Schreiber SL: cDNA cloning and gene mapping of a candidate human cell cycle checkpoint protein. Proc Natl Acad Sci USA 93:2850–2855, 1996

    PubMed  Google Scholar 

  68. Heitman J, Movva NR, Hall MN: Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253:905–909, 1991

    PubMed  Google Scholar 

  69. Cafferkey R, Young P, McLaughlin MM, Bergsma DJ, Koltin Y, Sathe GM, Faucette L, Eng WK, Johnson RK, Livi GP: Dominant missense mutations in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity. Mol Cell Biol 13:6012–6023, 1993

    PubMed  Google Scholar 

  70. Kunz J, Henriquez R, Schneider U, Deuter-Reinhard M, Movva NR, Hall MN: Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell 73:585–596, 1993

    PubMed  Google Scholar 

  71. Helliwell SB, Wagner P, Kunz J, Deuter-Reinhard M, Henriquez R, Hall MN: TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. Mol Biol Cell 5:105–118, 1994

    PubMed  Google Scholar 

  72. Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G, Abraham RT: Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem 270:815–822, 1995

    PubMed  Google Scholar 

  73. Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH: RAFT1: A mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78:35–43, 1994

    PubMed  Google Scholar 

  74. Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, Schreiber SL: A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369:756–758, 1994

    PubMed  Google Scholar 

  75. Brown EJ, Beal PA, Keith CT, Chen J, Shin TB, Schreiber SL: Control of p70 S6 kinase by kinase activity of FRAP in vivo. Nature 377:441–446, 1995

    PubMed  Google Scholar 

  76. Hartley KO, Gell D, Smith GCM, Zhang H, Divecha N, Connelly MA, Admon A, Lees-Miller SP, Anderson CW, Jackson SP: DNA-dependent protein kinase catalytic subunit: A relative of phosphatidyl-inositol 3-kinase and the ataxia telangiectasia gene product. Cell 82:849–856, 1995

    PubMed  Google Scholar 

  77. Anderson CW: DNA damage and the DNA-activated protein kinase. Trends Biochem Sci 18:433–437, 1993

    PubMed  Google Scholar 

  78. Gottlieb TM, Jackson SP: Protein kinases and DNA damage. Trends Biochem 19:500–503, 1994

    Google Scholar 

  79. Kuhn A, Gottlieb TM, Jackson SP, Grummt I: DNA-dependent protein kinase: A potent inhibitor of transcription by RNA polymerase I. Genes Dev 9:193–203, 1995

    PubMed  Google Scholar 

  80. Labhart P: DNA-dependent protein kinase specifically represses promoter-directed transcription initiation by RNA polymerase I. Proc Natl Acad Sci USA 92:2934–2938, 1995

    PubMed  Google Scholar 

  81. Jackson SP, Jeggo PA: DNA double-strand break repair and V(D)J recombination: Involvement of DNA-PK. Trends Biochem Sci 20:412–415, 1995

    PubMed  Google Scholar 

  82. Roth DB, Lindahl T, Gellert M: How to make ends meet. Curr Biol 5:496–499, 1995

    PubMed  Google Scholar 

  83. Lieber MR, Hesse JT, Lewis S, Bosnia GC, Rosenberg N, Mizuuchi K, Bosma MJ, Gellert M: The defect in murine severe combined immune deficiency: Joining of signal sequences but not coding segments in V(D)J recombination. Cell 55:7–16, 1988

    PubMed  Google Scholar 

  84. Hendrickson EA, Qin X-Q, Bump EA, Schatz DG, Qettinger M, Weaver DT: A link between double-strand break-related repair and V(D)J recombination: The scid mutation. Proc Natl Acad Sci USA 88:4061–4065, 1991

    PubMed  Google Scholar 

  85. Biedermann KA, Sun J, Giaccia AJ, Tosto LM, Brown JM: Scid mutation in mice confers hypersensitivity to ionizing radiation and a deficiency in DNA double-strand break repair. Proc Natl Acad Sci USA 88:1394–1397, 1991

    PubMed  Google Scholar 

  86. Lucke-Huhle C: Similarities between human ataxia fibroblasts and murine SCID cells: High sensitivity to gamma rays and high frequency of methotrexate-induced DHFR gene amplification, but normal radiosensitivity to densely ionizingα particles. Radiat Environ Biophys 33:210–210, 1994

    Google Scholar 

  87. Carpenter CL, Auger KR, Duckworth BC, Hou WM, Schaffhaysen B, Cantley LC: A tightly associated serine/threonine protein kinase regulates phosphoinositide 3-kinase activity. Mol Cell Biol 13:1657–1665, 1993

    PubMed  Google Scholar 

  88. Dhand R, Hiles I, Panayotou G, Roche S, Fry MJ, Gout I, Totty NF, Truong O, Vicendo P, Yonezawa K, Kasuga M, Courtneidge SA, Waterfiedl MD: PI 3-kinase is a dual specificity enzyme: Autoregulation by an intrinsic protein-serine kinase activity. EMBO J 13:522–533, 1994

    PubMed  Google Scholar 

  89. Tanti JF, Gremeaux T, Van Obberghen E, Le Marchand-Brustel Y: Insulin receptor substrate 1 is phosphorylated by the serine kinase activity of phosphatidylinositol 3-kinase. Biochem J 304:17–21, 1994

    PubMed  Google Scholar 

  90. Freund GG, Wittig JG, Mooney RA: The PI3-kinase serine kinase phosphorylates its p85 subunit and IRS-1 in PI3-kinase/IRS-1 complexes. Biochim Biophys Res Commun 206:272–278, 1995

    Google Scholar 

  91. Kapeller R, Cantley LC: Phosphatidylinositol 3-kinase. BioEssays 16:565–576, 1994

    PubMed  Google Scholar 

  92. Hunter T: When is a lipid kinase not a lipid kinase? When it is a protein kinase. Cell 83:1–4, 1995

    PubMed  Google Scholar 

  93. Enoch T, Norbury C: Cellular responses to DNA damage: cell cycle checkpoints, apoptosis and the roles of p53 and ATM. Trends Biochem Sci 20:426–430, 1995

    PubMed  Google Scholar 

  94. Hsieh C-L, Arlett CF, Lieber MR: V(D)J recombination in ataxia telangiectasia, Bloom's syndrome and a DNA ligase I-associated immunodeficiency disorder. J Biol Chem 268:20105–20109, 1993

    PubMed  Google Scholar 

  95. Kirsch IR: V(D)J recombination and ataxia-telangiectasia: A review. Int J Radiat Biol 66:S97-S108, 1994

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiloh, Y., Rotman, G. Ataxia-telangiectasia and the ATM gene: Linking neurodegeneration, immunodeficiency, and cancer to cell cycle checkpoints. J Clin Immunol 16, 254–260 (1996). https://doi.org/10.1007/BF01541389

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01541389

Key words

Navigation