Skip to main content
Log in

Projections from the medial agranular cortex to brain stem visuomotor centers in rats

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Projections from medial agranular cortex to brain stem in rat were determined by use of the anterograde tracers Phaseolus vulgaris leucoagglutinin, or wheat germ agglutinin conjugated horseradish peroxidase. Axonal trajectories were also followed by means of the Wiitanen modification of the Fink-Heimer degeneration technique. AGm was identified on the basis of its cytoarchitectonics. AGm projected to the anterior pretectal nucleus, the rostral interstitial nucleus of the medial longitudinal fasciculus, the medial accessory oculomotor nucleus of Bechterew, the interstitial nucleus of Cajal, the nucleus of Darkschewitsch, the nucleus cuneiformis and subcuneiformis, intermediate and deep superior collicular layers, the paramedian pontine reticular formation (reticularis pontis oralis and caudalis, and reticularis gigantocellularis), and raphe centralis superior. Differences in connections between rostral and caudal injections were observed: pontine and medullary projections were lighter from the rostral portion of AGm than from the more caudal portions of AGm. The heaviest projections to the anterior pretectal nucleus were from the caudal portion of AGm. The subcortical projections were very similar to those described for the frontal eye field in monkeys, and the majority of them targeted areas thought to be involved in coordination of gaze with head and neck movements. Thus AGm in rats may contain the homologue of the primate frontal eye fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

3:

main oculomotor nucleus

7:

facial motor nucleus;

I, II–IV, V, and VI:

cortical layers

III:

third ventricle

7n:

facial nerve

AC:

Anterior commissure

AGm:

medial agranular cortex

Bec:

Nucleus of Bechterew

cc:

corpus callosum

Dark:

Nucleus of Darkschewitsch

Dc:

dorsal cochlear nucleus

DLG:

dorsal lateral geniculate nucleus

F:

fornix

fr:

fasciculus retroflexus

ic:

inferior colliculus

Me5:

mesencephalic trigeminal nucleus

ml:

medial lemniscus

mlf:

medial longitudinal fasciculus

Mo5:

trigeminal motor nucleus

nV:

trigeminal nerve

pc:

posterior commissure

pn:

pons

Po:

posterior thalamic nucleus

PPo:

pedunculo-pontine nucleus

PPRF:

paramedian pontine reticular formation

py:

pyramidal tract

R:

red nucleus

RaCs:

raphe centralis superior

RaD:

dorsal raphe nucleus

RCf:

reticularis cuneiformis

RiMLF:

rostral interstitial nucleus of the medial longitudinal fasciculus

RMc:

reticularis magnocellularis

RPc:

reticularis parvocellularis

RPoCa:

reticularis pontis caudalis pars alpha

RPoCb:

reticularis pontis caudalis pars beta

RPoO:

reticularis pontis oralis

RPoOm:

reticularis pontis oralis pars medialis

RScf:

reticularis subcuneiformis

sc:

superior colliculus

SCP:

superior cerebellar peduncle

so:

superior olive

Sp5:

spinal trigeminal nucleus

Tz:

trapezoid nucleus

WGA-HRP:

wheat germ agglutinin- horseradish peroxidase

References

  • Astruc J (1971) Corticofugal connections of area 8 (frontal eye field) in Macaca mulatta. Brain Res 33:241–256

    Google Scholar 

  • Beckstead RM (1979) An autoradiographic examination of corticocortical and subcortical projections of the medio-dorsal projection (prefrontal) cortex in the rat. J Comp Neurol 184:43–62

    Google Scholar 

  • Brodal A (1981) Neurological anatomy in relation to clinical medicine. Oxford University Press, New York, pp 485–541, 551–553

    Google Scholar 

  • Bruce CJ, Goldberg ME (1985) Primate frontal eye fields. I. Single neurons discharging before saccades. J Neurophysiol 53:603–635

    Google Scholar 

  • Bruce CJ, Goldberg ME, Bushnell C, Stanton GB (1985) Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J Neurophysiol 54:715–734

    Google Scholar 

  • Büttner-Ennever J, Büttner U (1978) A cell group associated with vertical eye movements in the rostral mesencephalic reticular formation of the monkey. Brain Res 151:31–47

    Google Scholar 

  • Büttner-Ennever J, Cohen F, Pause M, Fries W (1988) Raphe nucleus of the pons containing omnipause neurons of the oculomotor system in the monkey and its homologue in man. J Comp Neurol 267:307–321

    PubMed  Google Scholar 

  • Büttner-Ennever J, Holstege G (1986) Anatomy of premotor centers in the reticular formation controlling oculomotor, skeletomotor and autonomic motor system. Prog Brain Res 64:89–98

    Google Scholar 

  • Cohen B, Komatsuzaki A (1968) Electrooculographic syndrome in monkeys after pontine reticular formation lesions. Arch Neurol 18:78–92

    Google Scholar 

  • Cohen B, Komatsuzaki A (1972) Eye movements induced by stimulation of the pontine reticular formation: evidence for integration in oculomotor pathways. Exp Neurol 36:101–117

    Google Scholar 

  • Cohen B, Waitzman DM, Büttner-Ennever JA, Matsuo V (1986) Horizontal saccades and the central mesencephalic reticular formation. Prog Brain Res 64:243–256

    Google Scholar 

  • Crowne DP (1983) The frontal eye field and attention. Psychol Bull 93:232–260

    Google Scholar 

  • Donoghue JF, Wise SP (1982) The motor cortex of the rat: cytoarchitecture and microstimulation mapping. J Comp Neurol 212:76–88

    Google Scholar 

  • Fink RP, Heimer L (1967) Two methods for selective silver impregnation of degenerating axons and their synaptic endings in the central nervous system. Brain Res 4:369–374

    Google Scholar 

  • Fukushima K (1987) The interstitial nucleus of Cajal and its role in the control of movements of head and eyes. Prog Neurobiol 29:107–192

    Article  CAS  PubMed  Google Scholar 

  • Fuller JH (1985) Eye and head movements in the pigmented rat. Vision Res 25:1121–1128

    Google Scholar 

  • Gerfen CR, Sawchenko PE (1984) An anterograde neuroanatomical tracing method that shows the detailed morphology of neurons, their axons, and terminals: immunohistochemical localization of an axonally transported plant lectin, Phaseolus vulgaris leucoagglutinin (PHA-L). Brain Res 29:219–238

    Google Scholar 

  • Gibson AR, Hansma DI, Houk JC, Robinson FR (1984) A sensitive low artifact TMB procedure for the demonstration of WGA-HRP in the CNS. Brain Res 298:235–241

    Google Scholar 

  • Goldberg ME, Bruce CJ (1986) The role of the arcuate frontal eye fields in the generation of saccadic eye movements. Prog Brain Res 64:143–154

    Google Scholar 

  • Hall RD, Lindholm EP (1974) Organization of motor and somatosensory neocortex in the albino rat. Brain Res 66:23–38

    Google Scholar 

  • Hikosaka O, Kawakami T (1977) Inhibitory neurons related to the quick phase of vestibular nystagmus: their location and projection. Exp Brain Res 27:377–396

    Google Scholar 

  • Hikosaka O, Sakamoto M (1987) Dynamic characteristics of saccadic eye movements in the albino rat. Neurosci Res 4:304–308

    Google Scholar 

  • Huerta MF, Krubitzer LA, Kass JH (1986) Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys I. Subcortical connections. J Comp Neurol 253:415–439

    Google Scholar 

  • Kolb B (1984) Functions of the frontal cortex of the rat: a comparative review. Brain Res Rev 8:65–98

    Article  Google Scholar 

  • Künzle H, Akert K (1977) Efferent connections of cortical area 8 (frontal eye field) in Macaco fascicularis: a reinvestigation using the autoradiographic technique. J Comp Neurol 173:147–164

    Google Scholar 

  • Langer TP, Kaneko CRS (1983) Efferent projections of the cat oculomotor reticular omnipause neuron region: an autoradiographic study. J Comp Neurol 217:288–306

    Google Scholar 

  • Leichnetz GR (1981) The prefrontal cortico-oculomotor trajectories in the monkey. J Neurol Sci 49:387–396

    Google Scholar 

  • Leichnetz GR (1985) The frontal eye field projects to the nucleus prepositus hypoglossi in the monkey. Neurosci Lett 54:185–188

    Google Scholar 

  • Leichnetz GR, Gonzalo-Ruiz A (1987) Collateralization of frontal eye field (medial precentral/anterior cingulate) neurons projecting to the paraoculomotor region, superior colliculus, and medial pontine reticular formation in the rat: a fluorescent double-labeling study. Exp Brain Res 68:355–364

    Google Scholar 

  • Leichnetz GR, Hardy SGP, Carruth MK (1987) Frontal projections to the region of the oculomotor complex in the rat: a retrograde and anterograde HRP study. J Comp Neurol 263:387–399

    Google Scholar 

  • Leichnetz GR, Smith DJ, Spencer RF (1984a) Cortical projections to the paramedian tegmental and basilar pons in the monkey. J Comp Neurol 228:388–408

    Google Scholar 

  • Leichnetz GR, Spencer RF, Smith DJ (1984b) Cortical projections to nuclei adjacent to the oculomotor complex in the medial dien-mesencephalic tegmentum in the monkey. J Comp Neurol 228:359–387

    Google Scholar 

  • Leonard CM (1969) The prefrontal cortex of the rat. I. Cortical projection of the mediodorsal nucleus. II. Efferent connections. Brain Res 12:321–343

    Google Scholar 

  • Markowitsch HJ, Pritzel M (1977) Comparative analysis of prefrontal learning functions in rats, cats, and monkeys. Psychol Bull 84:817–837

    Google Scholar 

  • McCrea RA, Baker R, Delgado-Garcia J (1979) Afferent and efferent organization of the prepositus hypoglossi nucleus. Prog Brain Res 50:653–655

    Google Scholar 

  • McHaffie JG, Stein BE (1982) Eye movements evoked by electrical stimulation in the superior colliculus of rats and hamsters. Brain Res 247:243–253

    Google Scholar 

  • Mesulam MM (1978) Tetramethyl benzidine for horseradish peroxidase neurochemistry: a noncarcinogenic blue reaction product with superior sensitivity for visualizing neuronal afferents and efferents. J Histochem Cytochem 26:106–117

    CAS  PubMed  Google Scholar 

  • Mesulam MM (1982) Tracing neural connections with horseradish peroxidase, Chapt 1. John Wiley and Sons, New York

    Google Scholar 

  • Mihailoff GA, Lee H, Watt CB, Yates R (1985) Projections to the basilar pontine nuclei from face sensory and motor regions of the cerebral cortex in rat. J Comp Neurol 237:251–263

    CAS  PubMed  Google Scholar 

  • Neafsey EJ, Bold EL, Haas G, Hurley-Guis KM, Quirk G, Sievert CF, Terreberry RR (1986a) The organization of the rat motor cortex: a micro stimulation mapping study. Brain Res Rev 11:77–96

    Google Scholar 

  • Neafsey EJ, Hurley-Gius KM, Arvanitis D (1986b) The topographical organization of neurons in the rat medial frontal, insular, and olfactory cortex projecting to the solitary nucleus, olfactory bulb, periaqueductal gray and superior colliculus. Brain Res 377:261–270

    Google Scholar 

  • Newman DB (1985a) Distinguishing rat brain stem reticulospinal nuclei by their neuronal morphology. I. Medullary nuclei. J Hirnforsch 26:187–226

    Google Scholar 

  • Newman DB (1985b) Distinguishing brain stem reticulospinal nuclei by their neuronal morphology. II. Pontine and mesencephalic nuclei. J Hirnforsch 26:385–418

    Google Scholar 

  • Ohgaki T, Curthoys IS, Markham CH (1987) Anatomy of physiologically identified eye movement-related pause neurons in the cat: pontomedullary region. J Comp Neurol 266:56–72

    Google Scholar 

  • Olszewski J, Baxter D (1954) Cytoarchitecture of the human brain stem. S Karger, New York

    Google Scholar 

  • Passingham RE, Myers C, Rawlins N, Lightfoot V, Fearn S (1988) Premotor cortex in the rat. Behav Neurosci 102:101–109

    Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press, New York

    Google Scholar 

  • Peterson BW (1980) Participation of pontomedullary reticular neurons in specific motor activity. In: JA Hobson and MAB Brazier (eds) The reticular formation revisited. Raven Press, pp 171–192

  • Reep RL (1984) Relationship between prefrontal and limbic cortex: a comparative anatomical review. Brain Behav Evol 25:5–80

    Google Scholar 

  • Reep RL, Corwin JL, Hashimoto A, Watson RT (1987) Efferent connections of the rostral portion of medial agranular cortex in rats. Brain Res Bull 19:203–221

    Google Scholar 

  • Schnyder H, Reisine H, Hepp K, Henn V (1985) Frontal eye field projection to the paramedian pontine reticular formation traced with wheat germ agglutinin in the monkey. Brain Res 329:151–160

    Google Scholar 

  • Schlag J, Schlag-Rey M (1987) Evidence for a supplementary eye field. J Neurophysiol 57:179–200

    Google Scholar 

  • Sefton AJ, Dreher B (1985) Visual system. In: Paxinos G (ed) The rat nervous system, Vol I. Forebrain and midbrain. Academic Press, New York, pp 169–221

    Google Scholar 

  • Shook BL, Schlag-Rey M, Schlag J (1988) Direct projections from the supplementary eye field to the nucleus raphe interpositus. Exp Brain Res 73:215–218

    Google Scholar 

  • Siegel JM, Tomaszewski KS (1983) Behavioral organization of reticular formation: studies in the unrestrained cat. I. Cells related to axial, limb, eye and other movements. J Neurophysiol 50:696–716

    Google Scholar 

  • Stanton GB, Goldberg ME, Bruce CJ (1988) Frontal eye field efferents in the macaque monkey. II. Topography of terminal fields in midbrain and pons. J Comp Neurol 271:493–506

    Google Scholar 

  • Strassman A, Highstein SM, McCrea RA (1986a) Anatomy and physiology of saccadic burst neurons in the alert squirrel monkey. I. Excitatory burst neurons. J Comp Neurol 249:337–357

    CAS  PubMed  Google Scholar 

  • Strassman A, Highstein SM, McCrea RA (1986b) Anatomy and physiology of saccadic burst neurons in the alert squirrel monkey. II. Inhibitory burst neurons J Comp Neurol 249:358–380

    CAS  PubMed  Google Scholar 

  • Sukekawa K (1988) Reciprocal connections between medial prefrontal cortex and lateral posterior nucleus in rats. Brain Behav Evol 32:246–251

    Google Scholar 

  • Wiesendanger R, Wiesendanger M (1982b) The corticopontine system in the rat. II. The projection pattern. J Comp Neurol 208:227–238

    Google Scholar 

  • Wiitanen JT (1969) Selective silver impregnation of degenerating axons and terminals in the central nervous system of the monkey (Macaca mulatta). Brain Res 14:546–548

    Google Scholar 

  • Wise SP, Donoghue JP (1986) Motor cortex of rodents. In: Jones, EG Peters, A (eds) Cerebral cortex, sensory-motor areas and aspects of cortical connectivity, Vol. 5. Plenum Press, New York, pp 243–270

    Google Scholar 

  • Zilles K (1985) The cortex of the rat: a stereotaxic atlas. Spinger, Berlin

    Google Scholar 

  • Zilles K, Wree A (1985) Cortex: areal and laminar structure. In: Paxinos G (ed) The rat nervous system. Academic Press, New York, pp 375–416

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stuesse, S.L., Newman, D.B. Projections from the medial agranular cortex to brain stem visuomotor centers in rats. Exp Brain Res 80, 532–544 (1990). https://doi.org/10.1007/BF00227994

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00227994

Key words

Navigation