Skip to main content

Integrating Neurotransmission in Striatal Medium Spiny Neurons

  • Chapter
  • First Online:
Book cover Synaptic Plasticity

Part of the book series: Advances in Experimental Medicine and Biology ((volume 970))

Abstract

The striatum is a major entry structure of the basal ganglia. Its role in information processing in close interaction with the cerebral cortex and thalamus has various behavioral consequences depending on the regions concerned, including control of body movements and motivation. A general feature of striatal information processing is the control by reward-related dopamine signals of glutamatergic striatal inputs and of their plasticity. This relies on specific sets of receptors and signaling proteins in medium-sized spiny neurons which belong to two groups, striatonigral and striatopallidal neurons. Some signaling pathways are activated only by dopamine or glutamate, but many provide multiple levels of interactions. For example, the cAMP pathway is mostly regulated by dopamine D1 receptors in striatonigral neurons, whereas the ERK pathway detects a combination of glutamate and dopamine signals and is essential for long-lasting modifications. These adaptations require changes in gene expression, and the signaling pathways linking synaptic activity to nuclear function and epigenetic changes are beginning to be deciphered. Their alteration underlies many aspects of striatal dysfunction in pathological conditions which include a decrease or an increase in dopamine transmission, as encountered in Parkinson’s disease or exposure to addictive drugs, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn, J. H., McAvoy, T., Rakhilin, S. V., Nishi, A., Greengard, P., & Nairn, A. C. (2007a). Protein kinase A activates protein phosphatase 2A by phosphorylation of the B56delta subunit. Proceedings of the National Academy of Sciences of the United States of America, 104, 2979–2984.

    PubMed  CAS  Google Scholar 

  • Ahn, J. H., Sung, J. Y., McAvoy, T., Nishi, A., Janssens, V., Goris, J., Greengard, P., & Nairn, A. C. (2007b). The B”/PR72 subunit mediates Ca2+-dependent dephosphorylation of DARPP-32 by protein phosphatase 2A. Proceedings of the National Academy of Sciences of the United States of America, 104, 9876–9881.

    PubMed  CAS  Google Scholar 

  • Alheid, G. F., & Heimer, L. (1988). New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: The striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience, 27, 1–39.

    PubMed  CAS  Google Scholar 

  • Barnes, T. D., Kubota, Y., Hu, D., Jin, D. Z., & Graybiel, A. M. (2005). Activity of striatal neurons reflects dynamic encoding and recoding of procedural memories. Nature, 437, 1158–1161.

    PubMed  CAS  Google Scholar 

  • Bateup, H. S., Svenningsson, P., Kuroiwa, M., Gong, S., Nishi, A., Heintz, N., & Greengard, P. (2008). Cell type-specific regulation of DARPP-32 phosphorylation by psychostimulant and antipsychotic drugs. Nature Neuroscience, 11, 932–939.

    PubMed  CAS  Google Scholar 

  • Bateup, H. S., Santini, E., Shen, W., Birnbaum, S., Valjent, E., Surmeier, D. J., Fisone, G., Nestler, E. J., & Greengard, P. (2010). Distinct subclasses of medium spiny neurons differentially regulate striatal motor behaviors. Proceedings of the National Academy of Sciences of the United States of America, 107, 14845–14850.

    PubMed  CAS  Google Scholar 

  • Belin, D., Jonkman, S., Dickinson, A., Robbins, T. W., & Everitt, B. J. (2009). Parallel and interactive learning processes within the basal ganglia: Relevance for the understanding of addiction. Behavioural Brain Research, 199, 89–102.

    PubMed  Google Scholar 

  • Benderska, N., Becker, K., Girault, J. A., Becker, C. M., Andreadis, A., & Stamm, S. (2010). DARPP-32 binds to tra2-beta1 and influences alternative splicing. Biochimica et Biophysica Acta, 1799, 448.

    PubMed  CAS  Google Scholar 

  • Bertran-Gonzalez, J., Bosch, C., Maroteaux, M., Matamales, M., Herve, D., Valjent, E., & Girault, J. A. (2008). Opposing patterns of signaling activation in dopamine D1 and D2 receptor-expressing striatal neurons in response to cocaine and haloperidol. Journal of Neuroscience, 28, 5671–5685.

    PubMed  CAS  Google Scholar 

  • Bertran-Gonzalez, J., Hakansson, K., Borgkvist, A., Irinopoulou, T., Brami-Cherrier, K., Usiello, A., Greengard, P., Herve, D., Girault, J. A., Valjent, E., & Fisone, G. (2009). Histone H3 phosphorylation is under the opposite tonic control of dopamine D2 and adenosine A2A receptors in striatopallidal neurons. Neuropsychopharmacology, 34, 1710–1720.

    PubMed  CAS  Google Scholar 

  • Bibb, J. A., Snyder, G. L., Nishi, A., Yan, Z., Meijer, L., Fienberg, A. A., Tsai, L. H., Kwon, Y. T., Girault, J. A., Czernik, A. J., Huganir, R. L., Hemmings, H. C., Jr., Nairn, A. C., & Greengard, P. (1999). Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signalling in neurons. Nature, 402, 669–671.

    PubMed  CAS  Google Scholar 

  • Bibb, J. A., Chen, J., Taylor, J. R., Svenningsson, P., Nishi, A., Snyder, G. L., Yan, Z., Sagawa, Z. K., Ouimet, C. C., Nairn, A. C., Nestler, E. J., & Greengard, P. (2001). Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature, 410, 376–380.

    PubMed  CAS  Google Scholar 

  • Brami-Cherrier, K., Valjent, E., Herve, D., Darragh, J., Corvol, J. C., Pages, C., Arthur, S. J., Girault, J. A., & Caboche, J. (2005). Parsing molecular and behavioral effects of cocaine in mitogen- and stress-activated protein kinase-1-deficient mice. Journal of Neuroscience, 25, 11444–11454.

    PubMed  CAS  Google Scholar 

  • Bromberg-Martin, E. S., Matsumoto, M., & Hikosaka, O. (2010). Dopamine in motivational control: Rewarding, aversive, and alerting. Neuron, 68, 815–834.

    PubMed  CAS  Google Scholar 

  • Calabresi, P., Gubellini, P., Centonze, D., Picconi, B., Bernardi, G., Chergui, K., Svenningsson, P., Fienberg, A. A., & Greengard, P. (2000). Dopamine and cAMP-regulated phosphoprotein 32 kDa controls both striatal long-term depression and long-term potentiation, opposing forms of synaptic plasticity. Journal of Neuroscience, 20, 8443–8451.

    PubMed  CAS  Google Scholar 

  • Chevalier, G., & Deniau, J. M. (1990). Disinhibition as a basic process in the expression of striatal functions. Trends in Neurosciences, 13, 277–280.

    PubMed  CAS  Google Scholar 

  • Chiamulera, C., Epping-Jordan, M. P., Zocchi, A., Marcon, C., Cottiny, C., Tacconi, S., Corsi, M., Orzi, F., & Conquet, F. (2001). Reinforcing and locomotor stimulant effects of cocaine are absent in mGluR5 null mutant mice. Nature Neuroscience, 4, 873–874.

    PubMed  CAS  Google Scholar 

  • Choe, E. S., Chung, K. T., Mao, L., & Wang, J. Q. (2002). Amphetamine increases phosphorylation of extracellular signal-regulated kinase and transcription factors in the rat striatum via group I metabotropic glutamate receptors. Neuropsychopharmacology, 27, 565–575.

    PubMed  CAS  Google Scholar 

  • Corbille, A. G., Valjent, E., Marsicano, G., Ledent, C., Lutz, B., Herve, D., & Girault, J. A. (2007). Role of cannabinoid type 1 receptors in locomotor activity and striatal signaling in response to psychostimulants. Journal of Neuroscience, 27, 6937–6947.

    PubMed  CAS  Google Scholar 

  • Corvol, J. C., Studler, J. M., Schonn, J. S., Girault, J. A., & Herve, D. (2001). Galpha (olf) is necessary for coupling D1 and A2a receptors to adenylyl cyclase in the striatum. Journal of Neurochemistry, 76, 1585–1588.

    PubMed  CAS  Google Scholar 

  • Corvol, J. C., Valjent, E., Pascoli, V., Robin, A., Stipanovich, A., Luedtke, R. R., Belluscio, L., Girault, J. A., & Herve, D. (2007). Quantitative changes in Galphaolf protein levels, but not D1 receptor, alter specifically acute responses to psychostimulants. Neuropsychopharmacology, 32, 1109–1121.

    PubMed  CAS  Google Scholar 

  • Crittenden, J. R., Cantuti-Castelvetri, I., Saka, E., Keller-McGandy, C. E., Hernandez, L. F., Kett, L. R., Young, A. B., Standaert, D. G., & Graybiel, A. M. (2009). Dysregulation of CalDAG-GEFI and CalDAG-GEFII predicts the severity of motor side-effects induced by anti-parkinsonian therapy. Proceedings of the National Academy of Sciences of the United States of America, 106, 2892–2896.

    PubMed  CAS  Google Scholar 

  • Dayan, P., & Balleine, B. W. (2002). Reward, motivation, and reinforcement learning. Neuron, 36, 285–298.

    PubMed  CAS  Google Scholar 

  • Deng, J. V., Rodriguiz, R. M., Hutchinson, A. N., Kim, I. H., Wetsel, W. C., & West, A. E. (2010). MeCP2 in the nucleus accumbens contributes to neural and behavioral responses to psychostimulants. Nature Neuroscience, 13, 1128–1136.

    PubMed  CAS  Google Scholar 

  • Derkinderen, P., Valjent, E., Toutant, M., Corvol, J. C., Enslen, H., Ledent, C., Trzaskos, J., Caboche, J., & Girault, J. A. (2003). Regulation of extracellular signal-regulated kinase by cannabinoids in hippocampus. Journal of Neuroscience, 23, 2371–2382.

    PubMed  CAS  Google Scholar 

  • Desdouits, F., Siciliano, J. C., Greengard, P., & Girault, J. A. (1995). Dopamine- and cAMP-regulated phosphoprotein DARPP-32: Phosphorylation of Ser-137 by casein kinase I inhibits dephosphorylation of Thr-34 by calcineurin. Proceedings of the National Academy of Sciences of the United States of America, 92, 2682–2685.

    PubMed  CAS  Google Scholar 

  • Doig, N. M., Moss, J., & Bolam, J. P. (2010). Cortical and thalamic innervation of direct and indirect pathway medium-sized spiny neurons in mouse striatum. Journal of Neuroscience, 30, 14610–14618.

    PubMed  CAS  Google Scholar 

  • Durieux, P. F., Bearzatto, B., Guiducci, S., Buch, T., Waisman, A., Zoli, M., Schiffmann, S. N., & de Kerchove d’Exaerde, A. (2009). D2R striatopallidal neurons inhibit both locomotor and drug reward processes. Nature Neuroscience, 12, 393–395.

    PubMed  CAS  Google Scholar 

  • Fasano, S., Bezard, E., D’Antoni, A., Francardo, V., Indrigo, M., Qin, L., Dovero, S., Cerovic, M., Cenci, M. A., & Brambilla, R. (2010). Inhibition of Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) signaling in the striatum reverts motor symptoms associated with L-dopa-induced dyskinesia. Proceedings of the National Academy of Sciences of the United States of America, 107, 21824–21829.

    Google Scholar 

  • Ferre, S., Ciruela, F., Woods, A. S., Lluis, C., & Franco, R. (2007). Functional relevance of neurotransmitter receptor heteromers in the central nervous system. Trends in Neurosciences, 30, 440–446.

    PubMed  CAS  Google Scholar 

  • Fienberg, A. A., et al. (1998). DARPP-32: Regulator of the efficacy of dopaminergic neurotransmission. Science, 281, 838–839.

    PubMed  CAS  Google Scholar 

  • Flajolet, M., Wang, Z., Futter, M., Shen, W., Nuangchamnong, N., Bendor, J., Wallach, I., Nairn, A. C., Surmeier, D. J., & Greengard, P. (2008). FGF acts as a co-transmitter through adenosine A(2A) receptor to regulate synaptic plasticity. Nature Neuroscience, 11, 1402–1409.

    PubMed  CAS  Google Scholar 

  • Franklin, T. B., Russig, H., Weiss, I. C., Graff, J., Linder, N., Michalon, A., Vizi, S., & Mansuy, I. M. (2010). Epigenetic transmission of the impact of early stress across generations. Biological Psychiatry, 68, 408–415.

    PubMed  Google Scholar 

  • Fujishige, K., Kotera, J., Michibata, H., Yuasa, K., Takebayashi, S., Okumura, K., & Omori, K. (1999). Cloning and characterization of a novel human phosphodiesterase that hydrolyzes both cAMP and cGMP (PDE10A). Journal of Biological Chemistry, 274, 18438–18445.

    PubMed  CAS  Google Scholar 

  • Gerfen, C. R. (1984). The neostriatal mosaic: Compartmentalization of corticostriatal input and striatonigral output systems. Nature, 311, 461–464.

    PubMed  CAS  Google Scholar 

  • Gerfen, C. R. (1992). The neostriatal mosaic: Multiple levels of compartmental organization. Trends in Neurosciences, 15, 133–139.

    PubMed  CAS  Google Scholar 

  • Gerfen, C. R. (2000). Molecular effects of dopamine on striatal-projection pathways. Trends in Neurosciences, 23, S64–S70.

    PubMed  CAS  Google Scholar 

  • Gharbi-Ayachi, A., Labbe, J. C., Burgess, A., Vigneron, S., Strub, J. M., Brioudes, E., Van-Dorsselaer, A., Castro, A., & Lorca, T. (2010). The substrate of Greatwall kinase, Arpp 19, controls mitosis by inhibiting protein phosphatase 2A. Science, 330, 1673–1677.

    PubMed  CAS  Google Scholar 

  • Girault, J. A., Hemmings, H. C., Jr., Williams, K. R., Nairn, A. C., & Greengard, P. (1989). Phosphorylation of DARPP-32, a dopamine- and cAMP-regulated phosphoprotein, by casein kinase II. Journal of Biological Chemistry, 264, 21748–21759.

    PubMed  CAS  Google Scholar 

  • Girault, J. A., Horiuchi, A., Gustafson, E. L., Rosen, N. L., & Greengard, P. (1990). Differential expression of ARPP-16 and ARPP-19, two highly related cAMP-regulated phosphoproteins, one of which is specifically associated with dopamine-innervated brain regions. Journal of Neuroscience, 10, 1124–1133.

    PubMed  CAS  Google Scholar 

  • Girault, J. A., Valjent, E., Caboche, J., & Herve, D. (2007). ERK2: A logical AND gate critical for drug-induced plasticity? Current Opinion in Pharmacology, 7, 77–85.

    PubMed  CAS  Google Scholar 

  • Giuffrida, A., Parsona, L. H., Kerr, T. M., Rodriguez de Fonseca, F., Navarro, M., & Piomelli, D. (1999). Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nature Neuroscience, 2, 358–363.

    PubMed  CAS  Google Scholar 

  • Graybiel, A. M., & Hickey, T. L. (1982). Chemospecificity of ontogenetic units in the striatum: Demonstration by combining [3H]thymidine neuronography and histochemical staining. Proceedings of the National Academy of Sciences of the United States of America, 79, 198–202.

    PubMed  CAS  Google Scholar 

  • Heiman, M., Schaefer, A., Gong, S., Peterson, J. D., Day, M., Ramsey, K. E., Suarez-Farinas, M., Schwarz, C., Stephan, D. A., Surmeier, D. J., Greengard, P., & Heintz, N. (2008). A translational profiling approach for the molecular characterization of CNS cell types. Cell, 135, 738–748.

    PubMed  CAS  Google Scholar 

  • Hemmings, H. C., Jr., & Greengard, P. (1989). ARPP-21, a cAMP-regulated phosphoprotein Mr = 21,000 enriched in dopamine-innervated brain regions. I. Purification and characterization of the protein from bovine caudate nucleus. Journal of Neuroscience, 9, 851–864.

    PubMed  CAS  Google Scholar 

  • Hemmings, H. C., Jr., Greengard, P., Tung, H. Y. L., & Cohen, P. (1984). DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1. Nature, 310, 503–505.

    PubMed  CAS  Google Scholar 

  • Herve, D., Levi-Strauss, M., Marey-Semper, I., Verney, C., Tassin, J. P., Glowinski, J., & Girault, J. A. (1993). G(olf) and Gs in rat basal ganglia: Possible involvement of G(olf) in the coupling of dopamine D1 receptor with adenylyl cyclase. Journal of Neuroscience, 13, 2237–2248.

    PubMed  CAS  Google Scholar 

  • Hikida, T., Kimura, K., Wada, N., Funabiki, K., & Nakanishi, S. (2010). Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron, 66, 896–907.

    PubMed  CAS  Google Scholar 

  • Hope, B. T., Nye, H. E., Kelz, M. B., Self, D. W., Iadarola, M. J., & Nestler, E. J. (1994). Induction of long-lasting AP1 complex composed of altered Fos-like proteins inbrain by chronic cocaine and other chronic treatments. Neuron, 13, 1235–1244.

    PubMed  CAS  Google Scholar 

  • Hyman, S. E., Malenka, R. C., & Nestler, E. J. (2006). Neural mechanisms of addiction: The role of reward-related learning and memory. Annual Review of Neuroscience, 29, 565–598.

    PubMed  CAS  Google Scholar 

  • Ibba, F., Vinci, S., Spiga, S., Peana, A. T., Assaretti, A. R., Spina, L., Longoni, R., & Acquas, E. (2009). Ethanol-induced extracellular signal regulated kinase: Role of dopamine D1 receptors. Alcoholism, Clinical and Experimental Research, 33, 858–867.

    PubMed  CAS  Google Scholar 

  • Im, H. I., Hollander, J. A., Bali, P., & Kenny, P. J. (2010). MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nature Neuroscience, 13, 1120–1127.

    PubMed  CAS  Google Scholar 

  • Kolata, S., Light, K., Wass, C. D., Colas-Zelin, D., Roy, D., & Matzel, L. D. (2010). A dopaminergic gene cluster in the prefrontal cortex predicts performance indicative of general intelligence in genetically heterogeneous mice. PLoS One, 5, e14036.

    PubMed  Google Scholar 

  • Koshibu, K., Graff, J., Beullens, M., Heitz, F. D., Berchtold, D., Russig, H., Farinelli, M., Bollen, M., & Mansuy, I. M. (2009). Protein phosphatase 1 regulates the histone code for long-term memory. Journal of Neuroscience, 29, 13079–13089.

    PubMed  CAS  Google Scholar 

  • Kravitz, A. V., Freeze, B. S., Parker, P. R., Kay, K., Thwin, M. T., Deisseroth, K., & Kreitzer, A. C. (2010). Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature, 466, 622–626.

    PubMed  CAS  Google Scholar 

  • Kreitzer, A. C. (2009). Physiology and pharmacology of striatal neurons. Annual Review of Neuroscience, 32, 127–147.

    PubMed  CAS  Google Scholar 

  • Kriaucionis, S., & Heintz, N. (2009). The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science, 324, 929–930.

    PubMed  CAS  Google Scholar 

  • Kumar, A., Choi, K. H., Renthal, W., Tsankova, N. M., Theobald, D. E., Truong, H. T., Russo, S. J., Laplant, Q., Sasaki, T. S., Whistler, K. N., Neve, R. L., Self, D. W., & Nestler, E. J. (2005). Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron, 48, 303–314.

    PubMed  CAS  Google Scholar 

  • LaPlant, Q., et al. (2010). Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nature Neuroscience, 13, 1137–1143.

    PubMed  CAS  Google Scholar 

  • Le Novere, N., Li, L., & Girault, J. A. (2008). DARPP-32: Molecular integration of phosphorylation potential. Cellular and Molecular Life Sciences, 65, 2125–2127.

    PubMed  Google Scholar 

  • Lee, F. J., Xue, S., Pei, L., Vukusic, B., Chery, N., Wang, Y., Wang, Y. T., Niznik, H. B., Yu, X. M., & Liu, F. (2002a). Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell, 111, 219–230.

    PubMed  CAS  Google Scholar 

  • Lee, K. W., Hong, J. H., Choi, I. Y., Che, Y., Lee, J. K., Yang, S. D., Song, C. W., Kang, H. S., Lee, J. H., Noh, J. S., Shin, H. S., & Han, P. L. (2002b). Impaired D2 dopamine receptor function in mice lacking type 5 adenylyl cyclase. Journal of Neuroscience, 22, 7931–7940.

    PubMed  CAS  Google Scholar 

  • Mao, L., Yang, L., Tang, Q., Samdani, S., Zhang, G., & Wang, J. Q. (2005). The scaffold protein Homer1b/c links metabotropic glutamate receptor 5 to extracellular signal-regulated protein kinase cascades in neurons. Journal of Neuroscience, 25, 2741–2752.

    PubMed  CAS  Google Scholar 

  • Matamales, M., Bertran-Gonzalez, J., Salomon, L., Degos, B., Deniau, J. M., Valjent, E., Herve, D., & Girault, J. A. (2009). Striatal medium-sized spiny neurons: Identification by nuclear staining and study of neuronal subpopulations in BAC transgenic mice. PLoS One, 4, e4770.

    PubMed  Google Scholar 

  • Maze, I., Covington, H. E., 3rd, Dietz, D. M., LaPlant, Q., Renthal, W., Russo, S. J., Mechanic, M., Mouzon, E., Neve, R. L., Haggarty, S. J., Ren, Y., Sampath, S. C., Hurd, Y. L., Greengard, P., Tarakhovsky, A., Schaefer, A., & Nestler, E. J. (2010). Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science, 327, 213–216.

    PubMed  CAS  Google Scholar 

  • Menniti, F. S., Faraci, W. S., & Schmidt, C. J. (2006). Phosphodiesterases in the CNS: Targets for drug development. Nature Reviews. Drug Discovery, 5, 660–670.

    PubMed  CAS  Google Scholar 

  • Meyer-Lindenberg, A., Straub, R. E., Lipska, B. K., Verchinski, B. A., Goldberg, T., Callicott, J. H., Egan, M. F., Huffaker, S. S., Mattay, V. S., Kolachana, B., Kleinman, J. E., & Weinberger, D. R. (2007). Genetic evidence implicating DARPP-32 in human frontostriatal structure, function, and cognition. The Journal of Clinical Investigation, 117, 672–682.

    PubMed  CAS  Google Scholar 

  • Miller, C. A., & Marshall, J. F. (2005). Molecular substrates for retrieval and reconsolidation of cocaine-associated contextual memory. Neuron, 47, 873–884.

    PubMed  CAS  Google Scholar 

  • Mink, J. W. (1996). The basal ganglia: Focused selection and inhibition of competing motor programs. Progress in Neurobiology, 50, 381–425.

    PubMed  CAS  Google Scholar 

  • Mochida, S., Maslen, S. L., Skehel, M., & Hunt, T. (2010). Greatwall phosphorylates an inhibitor of protein phosphatase 2A that is essential for mitosis. Science, 330, 1670–1673.

    PubMed  CAS  Google Scholar 

  • Montminy, M. (1997). Transcriptional regulation by cyclic AMP. Annual Review of Biochemistry, 66, 807–822.

    PubMed  CAS  Google Scholar 

  • Moorhead, G. B. G., Trinkle-Mulcahy, L., & Ulke-Lemée, A. (2007). Emerging roles of nuclear protein phosphatases. Nature Reviews Molecular Cell Biology, 7, 235–244.

    Google Scholar 

  • Moss, J., & Bolam, J. P. (2008). A dopaminergic axon lattice in the striatum and its relationship with cortical and thalamic terminals. Journal of Neuroscience, 28, 11221–11230.

    PubMed  CAS  Google Scholar 

  • Ouimet, C. C., & Greengard, P. (1990). Distribution of DARPP-32 in the basal ganglia: An electron microscopic study. Journal of Neurocytology, 19, 39–52.

    PubMed  CAS  Google Scholar 

  • Ouimet, C. C., Hemmings, H. C., Jr., & Greengard, P. (1989). ARPP-21, a cyclic AMP-regulated phosphoprotein enriched in dopamine-innervated brain regions. II. Immunocytochemical localization in rat brain. Journal of Neuroscience, 9, 865–875.

    PubMed  CAS  Google Scholar 

  • Pascoli, V., Besnard, A., Herve, D., Pages, C., Heck, N., Girault, J. A., Caboche, J., & Vanhoutte, P. (2011). Cyclic adenosine monophosphate-independent tyrosine phosphorylation of NR2B mediates cocaine-induced extracellular signal-regulated kinase activation. Biological Psychiatry, 69, 218–227.

    PubMed  CAS  Google Scholar 

  • Pascoli, V., Turiault, M., & Lüscher, C. (2012). Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour. Nature, in press.

    Google Scholar 

  • Paul, S., Nairn, A. C., Wang, P., & Lombroso, P. J. (2003). NMDA-mediated activation of the tyrosine phosphatase STEP regulates the duration of ERK signaling. Nature Neuroscience, 6, 34–42.

    PubMed  CAS  Google Scholar 

  • Pearce, L. R., Komander, D., & Alessi, D. R. (2010). The nuts and bolts of AGC protein kinases. Nature Reviews Molecular Cell Biology, 11, 9–22.

    PubMed  CAS  Google Scholar 

  • Polli, J. W., & Kincaid, R. L. (1994). Expression of a calmodulin-dependent phosphodiesterase isoform (PDE1B1) correlates with brain regions having extensive dopaminergic innervation. Journal of Neuroscience, 14, 1251–1261.

    PubMed  CAS  Google Scholar 

  • Pulipparacharuvil, S., Renthal, W., Hale, C. F., Taniguchi, M., Xiao, G., Kumar, A., Russo, S. J., Sikder, D., Dewey, C. M., Davis, M. M., Greengard, P., Nairn, A. C., Nestler, E. J., & Cowan, C. W. (2008). Cocaine regulates MEF2 to control synaptic and behavioral plasticity. Neuron, 59, 621–633.

    PubMed  CAS  Google Scholar 

  • Rakhilin, S. V., Olson, P. A., Nishi, A., Starkova, N. N., Fienberg, A. A., Nairn, A. C., Surmeier, D. J., & Greengard, P. (2004). A network of control mediated by regulator of calcium/calmodulin-dependent signaling. Science, 306, 698–701.

    PubMed  CAS  Google Scholar 

  • Redgrave, P., Prescott, T. J., & Gurney, K. (1999). The basal ganglia: A vertebrate solution to the selection problem? Neuroscience, 89, 1009–1023.

    PubMed  CAS  Google Scholar 

  • Reed, T. M., Repaske, D. R., Snyder, G. L., Greengard, P., & Vorhees, C. V. (2002). Phosphodiesterase 1B knock-out mice exhibit exaggerated locomotor hyperactivity and DARPP-32 phosphorylation in response to dopamine agonists and display impaired spatial learning. Journal of Neuroscience, 22, 5188–5197.

    PubMed  CAS  Google Scholar 

  • Riccio, A. (2010). Dynamic epigenetic regulation in neurons: Enzymes, stimuli and signaling pathways. Nature Neuroscience, 13, 1330–1337.

    PubMed  CAS  Google Scholar 

  • Salzmann, J., Marie-Claire, C., Le Guen, S., Roques, B. P., & Noble, F. (2003). Importance of ERK activation in behavioral and biochemical effects induced by MDMA in mice. British Journal of Pharmacology, 140, 831–838.

    PubMed  CAS  Google Scholar 

  • Santini, E., Valjent, E., Usiello, A., Carta, M., Borgkvist, A., Girault, J. A., Herve, D., Greengard, P., & Fisone, G. (2007). Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in L-DOPA-induced dyskinesia. Journal of Neuroscience, 27, 6995–7005.

    PubMed  CAS  Google Scholar 

  • Santini, E., Valjent, E., & Fisone, G. (2008). Parkinson’s disease: Levodopa-induced dyskinesia and signal transduction. FEBS Journal, 275, 1392–1399.

    PubMed  CAS  Google Scholar 

  • Santini, E., Alcacer, C., Cacciatore, S., Heiman, M., Herve, D., Greengard, P., Girault, J. A., Valjent, E., & Fisone, G. (2009). L-DOPA activates ERK signaling and phosphorylates histone H3 in the striatonigral medium spiny neurons of hemiparkinsonian mice. Journal of Neurochemistry, 108, 621–633.

    PubMed  CAS  Google Scholar 

  • Schiffmann, S. N., & Vanderhaeghen, J.-J. (1993). Adenosine A2 receptors regulate the gene expression of striatopallidal and striatonigral neurons. Journal of Neuroscience, 13, 1080–1087.

    PubMed  CAS  Google Scholar 

  • Schneider, R., & Grosschedl, R. (2007). Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes & Development, 21, 3027–3043.

    CAS  Google Scholar 

  • Schultz, W. (2010). Dopamine signals for reward value and risk: Basic and recent data. Behavioral and Brain Functions, 6, 24.

    PubMed  Google Scholar 

  • Schwindinger, W. F., Betz, K. S., Giger, K. E., Sabol, A., Bronson, S. K., & Robishaw, J. D. (2003). Loss of G protein gamma 7 alters behavior and reduces striatal alpha(olf) level and cAMP production. Journal of Biological Chemistry, 278, 6575–6579.

    PubMed  CAS  Google Scholar 

  • Schwindinger, W. F., Mihalcik, L. J., Giger, K. E., Betz, K. S., Stauffer, A. M., Linden, J., Herve, D., & Robishaw, J. D. (2010). Adenosine A2A receptor signaling and golf assembly show a specific requirement for the gamma7 subtype in the striatum. Journal of Biological Chemistry, 285, 29787–29796.

    PubMed  CAS  Google Scholar 

  • Scott, L., & Aperia, A. (2009). Interaction between N-methyl-D-aspartic acid receptors and D1 dopamine receptors: An important mechanism for brain plasticity. Neuroscience, 158, 62–66.

    PubMed  CAS  Google Scholar 

  • Sgambato, V., Pagès, C., Rogard, M., Besson, M. J., & Caboche, J. (1998). Extracellular signal-regulated kinase (ERK) controls immediate early gene induction on corticostriatal stimulation. Journal of Neuroscience, 18, 8814–8825.

    PubMed  CAS  Google Scholar 

  • Siuciak, J. A., McCarthy, S. A., Chapin, D. S., Fujiwara, R. A., James, L. C., Williams, R. D., Stock, J. L., McNeish, J. D., Strick, C. A., Menniti, F. S., & Schmidt, C. J. (2006). Genetic deletion of the striatum-enriched phosphodiesterase PDE10A: Evidence for altered striatal function. Neuropharmacology, 51, 374–385.

    PubMed  CAS  Google Scholar 

  • Siuciak, J. A., McCarthy, S. A., Chapin, D. S., & Martin, A. N. (2008). Behavioral and neurochemical characterization of mice deficient in the phosphodiesterase-4B (PDE4B) enzyme. Psychopharmacology, 197, 115–126.

    PubMed  CAS  Google Scholar 

  • Snyder, G. L., Fienberg, A. A., Huganir, R. L., & Greengard, P. (1998). A dopamine D1 receptor protein kinase A dopamine- and cAMP-regulated phosphoprotein (M r 32 kDa) protein phosphatase-1 pathway regulates dephosphorylation of the NMDA receptor. Journal of Neuroscience, 18, 10297–10303.

    PubMed  CAS  Google Scholar 

  • Sokoloff, P., Giros, B., Martres, M.-P., Bouthenet, M.-L., & Schwartz, J.-C. (1990). Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature, 347, 146–151.

    PubMed  CAS  Google Scholar 

  • Stipanovich, A., Valjent, E., Matamales, M., Nishi, A., Ahn, J. H., Maroteaux, M., Bertran-Gonzalez, J., Brami-Cherrier, K., Enslen, H., Corbille, A. G., Filhol, O., Nairn, A. C., Greengard, P., Herve, D., & Girault, J. A. (2008). A phosphatase cascade by which rewarding stimuli control nucleosomal response. Nature, 453, 879–884.

    PubMed  CAS  Google Scholar 

  • Surmeier, D. J., Ding, J., Day, M., Wang, Z., & Shen, W. (2007). D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends in Neurosciences, 30, 228–235.

    PubMed  CAS  Google Scholar 

  • Svenningsson, P., Lindskog, M., Ledent, C., Parmentier, M., Greengard, P., Fredholm, B. B., & Fisone, G. (2000). Regulation of the phosphorylation of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa in vivo by dopamine D1, dopamine D2, and adenosine A2A receptors. Proceedings of the National Academy of Sciences of the United States of America, 97, 1856–1860.

    PubMed  CAS  Google Scholar 

  • Svenningsson, P., Nishi, A., Fisone, G., Girault, J. A., Nairn, A. C., & Greengard, P. (2004). DARPP-32: An integrator of neurotransmission. Annual Review of Pharmacology and Toxicology, 44, 269–296.

    PubMed  CAS  Google Scholar 

  • Sweatt, J. D. (2004). Mitogen-activated protein kinases in synaptic plasticity and memory. Current Opinion in Neurobiology, 14, 311–317.

    PubMed  CAS  Google Scholar 

  • Tepper, J. M., Tecuapetla, F., Koos, T., & Ibáñez-Sandoval, O. (2010). Heterogeneity and diversity of striatal GABAergic interneurons. Frontiers in Neuroanatomy, 4, 150.

    PubMed  CAS  Google Scholar 

  • Tian, X., Kai, L., Hockberger, P. E., Wokosin, D. L., & Surmeier, D. J. (2010). MEF-2 regulates activity-dependent spine loss in striatopallidal medium spiny neurons. Molecular and Cellular Neuroscience, 44, 94–108.

    PubMed  CAS  Google Scholar 

  • Toki, S., Kawasaki, H., Tashiro, N., Housman, D. E., & Graybiel, A. M. (2001). Guanine nucleotide exchange factors CalDAG-GEFI and CalDAG-GEFII are colocalized in striatal projection neurons. The Journal of Comparative Neurology, 437, 398–407.

    PubMed  CAS  Google Scholar 

  • Valjent, E., Corvol, J. C., Pages, C., Besson, M. J., Maldonado, R., & Caboche, J. (2000). Involvement of the extracellular signal-regulated kinase cascade for cocaine-rewarding properties. Journal of Neuroscience, 20, 8701–8709.

    PubMed  CAS  Google Scholar 

  • Valjent, E., Pages, C., Rogard, M., Besson, M. J., Maldonado, R., & Caboche, J. (2001). Delta 9-tetrahydrocannabinol-induced MAPK/ERK and Elk-1 activation in vivo depends on dopaminergic transmission. European Journal of Neuroscience, 14, 342–352.

    PubMed  CAS  Google Scholar 

  • Valjent, E., Pages, C., Herve, D., Girault, J. A., & Caboche, J. (2004). Addictive and non-addictive drugs induce distinct and specific patterns of ERK activation in mouse brain. European Journal of Neuroscience, 19, 1826–1836.

    PubMed  Google Scholar 

  • Valjent, E., Pascoli, V., Svenningsson, P., Paul, S., Enslen, H., Corvol, J. C., Stipanovich, A., Caboche, J., Lombroso, P. J., Nairn, A. C., Greengard, P., Herve, D., & Girault, J. A. (2005). Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proceedings of the National Academy of Sciences of the United States of America, 102, 491–496.

    PubMed  CAS  Google Scholar 

  • Valjent, E., Corbille, A. G., Bertran-Gonzalez, J., Herve, D., & Girault, J. A. (2006a). Inhibition of ERK pathway or protein synthesis during reexposure to drugs of abuse erases previously learned place preference. Proceedings of the National Academy of Sciences of the United States of America, 103, 2932–2937.

    PubMed  CAS  Google Scholar 

  • Valjent, E., Aubier, B., Corbille, A. G., Brami-Cherrier, K., Caboche, J., Topilko, P., Girault, J. A., & Herve, D. (2006b). Plasticity-associated gene Krox24/Zif268 Is required for long-lasting behavioral effects of cocaine. Journal of Neuroscience, 26, 4956–4960.

    PubMed  CAS  Google Scholar 

  • Valjent, E., Bertran-Gonzalez, J., Herve, D., Fisone, G., & Girault, J. A. (2009). Looking BAC at striatal signaling: Cell-specific analysis in new transgenic mice. Trends in Neurosciences, 32, 538–547.

    PubMed  CAS  Google Scholar 

  • van der Stelt, M., & Di Marzo, V. (2003). The endocannabinoid system in the basal ganglia and in the mesolimbic reward system: Implications for neurological and psychiatric disorders. European Journal of Pharmacology, 480, 133–150.

    PubMed  Google Scholar 

  • Vanhoutte, P., Barnier, J. V., Guibert, B., Pagès, C., Besson, M. J., Hipskind, R. A., & Caboche, J. (1999). Glutamate induces phosphorylation of Elk-1 and CREB, along with c-fos activation, via an extracellular signal-regulated kinase-dependent pathway in brain slices. Molecular and Cellular Biology, 19, 136–146.

    PubMed  CAS  Google Scholar 

  • Voorn, P., Vanderschuren, L. J., Groenewegen, H. J., Robbins, T. W., & Pennartz, C. M. (2004). Putting a spin on the dorsal-ventral divide of the striatum. Trends in Neurosciences, 27, 468–474.

    PubMed  CAS  Google Scholar 

  • Voulalas, P. J., Holtzclaw, L., Wolstenholme, J., Russell, J. T., & Hyman, S. E. (2005). Metabotropic glutamate receptors and dopamine receptors cooperate to enhance extracellular signal-regulated kinase phosphorylation in striatal neurons. Journal of Neuroscience, 25, 3763–3773.

    PubMed  CAS  Google Scholar 

  • Walaas, S. I., Aswad, D. W., & Greengard, P. (1983). A dopamine- and cyclic AMP-regulated phosphoprotein enriched in dopamine-innervated brain regions. Nature, 301, 69–71.

    PubMed  CAS  Google Scholar 

  • Wickens, J. R. (2009). Synaptic plasticity in the basal ganglia. Behavioural Brain Research, 199, 119–128.

    PubMed  Google Scholar 

  • Wickens, J. R., Horvitz, J. C., Costa, R. M., & Killcross, S. (2007). Dopaminergic mechanisms in actions and habits. Journal of Neuroscience, 27, 8181–8183.

    PubMed  CAS  Google Scholar 

  • Wittmann, M., Queisser, G., Eder, A., Wiegert, J. S., Bengtson, C. P., Hellwig, A., Wittum, G., & Bading, H. (2009). Synaptic activity induces dramatic changes in the geometry of the cell nucleus: Interplay between nuclear structure, histone H3 phosphorylation, and nuclear calcium signaling. Journal of Neuroscience, 29, 14687–14700.

    PubMed  CAS  Google Scholar 

  • Zhang, T. Y., & Meaney, M. J. (2010). Epigenetics and the environmental regulation of the genome and its function. Annual Review of Psychology, 61(439–466), C431–C433.

    Google Scholar 

  • Zhuang, X., Belluscio, L., & Hen, R. (2000). GOLFalpha mediates dopamine D1 receptor signaling. Journal of Neuroscience, 20, RC91. 1–5.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Antoine Girault .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/WIen

About this chapter

Cite this chapter

Girault, JA. (2012). Integrating Neurotransmission in Striatal Medium Spiny Neurons. In: Kreutz, M., Sala, C. (eds) Synaptic Plasticity. Advances in Experimental Medicine and Biology, vol 970. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0932-8_18

Download citation

Publish with us

Policies and ethics