Skip to main content

Computational Exploration of Neuron and Neural Network Models in Neurobiology

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 401))

Summary

The electrical activity of individual neurons and neuronal networks is shaped by the complex interplay of a large number of non-linear processes, including the voltage-dependent gating of ion channels and the activation of synaptic receptors. These complex dynamics make it difficult to understand how individual neuron or network parameters—such as the number of ion channels of a given type in a neuron’s membrane or the strength of a particular synapse—influence neural system function. Systematic exploration of cellular or network model parameter spaces by computational brute force can overcome this difficulty and generate comprehensive data sets that contain information about neuron or network behavior for many different combinations of parameters. Searching such data sets for parameter combinations that produce functional neuron or network output provides insights into how narrowly different neural system parameters have to be tuned to produce a desired behavior. This chapter describes the construction and analysis of databases of neuron or neuronal network models and describes some of the advantages and downsides of such exploration methods.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Guckenheimer, J., Gueron, S., and Harris-Warrick, R. M. (1993) Mapping the dynamics of a bursting neuron. Philos. Trans. R. Soc. Lond. B. 341, 345–359.

    Article  CAS  Google Scholar 

  2. Guckenheimer, J., HarrisWarrick, R., Peck, J., and Willms, A. (1997) Bifurcation, bursting, and spike frequency adaptation. J. Comput. Neurosci. 4, 257–277.

    Article  CAS  PubMed  Google Scholar 

  3. Izhikevich, E. M. (2000) Neural excitability, spiking and bursting. Int. J. Bifurcat. Chaos 10, 1171–1266.

    Article  Google Scholar 

  4. Rush, M. E., and Rinzel, J. (1994) Analysis of bursting in a thalamic neuron model. Biol. Cybern. 71, 281–291.

    Article  CAS  PubMed  Google Scholar 

  5. Prinz, A. A., Billimoria, C. P., and Marder, E. (2003) Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. J. Neurophysiol. 90, 3998–4015.

    Article  PubMed  Google Scholar 

  6. Prinz, A. A., Bucher, D., and Marder, E. (2004) Similar network activity from disparate circuit parameters. Nat. Neurosci. 7, 1345–1352.

    Article  CAS  PubMed  Google Scholar 

  7. De Schutter, E., and Bower, J. M. (1994) An active membrane model of the cerebellar Purkinje-cell. I. Simulation of current clamps in slice. J. Neurophysiol. 71, 375–400.

    PubMed  Google Scholar 

  8. Nadim, F., Olsen, Ø. H., De Schutter, E., and Calabrese, R. L. (1995) Modeling the leech heartbeat elemental oscillator. I. Interactions of intrinsic and synaptic currents. J. Comput. Neurosci. 2, 215–235.

    Article  CAS  PubMed  Google Scholar 

  9. Traub, R. D., Wong, R. K. S., Miles, R., and Michelson, H. (1991) A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J. Neurophysiol. 66, 635–650.

    CAS  PubMed  Google Scholar 

  10. Goldman, M. S., Golowasch, J., Marder, E., and Abbott, L. F. (2001) Global structure, robustness, and modulation of neuronal models. J. Neurosci. 21, 5229–5238.

    CAS  PubMed  Google Scholar 

  11. Gunay, C., Edgerton, J. R., and Jaeger, D. (2004) 2004 Abstract Viewer and Itinerary Planner, Society for Neuroscience, Washington, DC.

    Google Scholar 

  12. Hines, M. L., and Carnevale, M. T. (1997) The NEURON simulation environment. Neural Comput. 9, 1179–1209.

    Article  CAS  PubMed  Google Scholar 

  13. Bower, J. M., and Beeman, D. (1998) The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System, Springer, New York.

    Google Scholar 

  14. Taylor, A. L., Hickey, T. J., Prinz, A. A., Marder, E. (2006) Structure and visualization of high-dimensional conductance spaces. J. Neurophysiol. 96, 891–905.

    Article  PubMed  Google Scholar 

  15. Prinz, A. A., Thirumalai, V., and Marder, E. (2003) The functional consequences of changes in the strength and duration of synaptic inputs to oscillatory neurons. J. Neurosci. 23, 943–954.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Prinz, A.A. (2007). Computational Exploration of Neuron and Neural Network Models in Neurobiology. In: Neuroinformatics. Methods in Molecular Biology™, vol 401. Humana Press. https://doi.org/10.1007/978-1-59745-520-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-520-6_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-720-4

  • Online ISBN: 978-1-59745-520-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics