Skip to main content

Chronic Mild Hypoxia Ameliorates Chronic Inflammatory Activity in Myelin Oligodendrocyte Glycoprotein (MOG) Peptide Induced Experimental Autoimmune Encephalomyelitis (EAE)

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 701))

Abstract

While the pathologic events associated with multiple sclerosis (MS), diffuse axonal injury, cognitive damage, andwhite matter plaques, have been known for some time, the etiology of MS is still unknown and therapeutic efforts are somewhat disappointing. This may be due to a lack of fundamental knowledge on howto buffer the brain from secondary injury following immune attack. Maintenance of central nervous system (CNS) homeostasis is a complex set of regulatory adjustments by the neurovascular unit that includes induction of adaptive angiogenesis. Although aspects of adaptive angiogenesis are induced in MS and experimental autoimmune encephalomyelitis (EAE), vascular remodeling is ineffective and the balance between metabolic need and oxygen (O2) and glucose availability is disrupted.We hypothesized that restoration of metabolic homeostasis in the CNS would ameliorate tissue damage and promote repair in myelin oligodendrocyteglycoprotein(MOG)-induced EAE in mice. Exposure of animals to chronic mild hypoxia (10% O2) increased vascular density and significantly delayed onset and severity of clinical EAE. When animals were exposed to hypoxia after the onset of clinical symptoms, the severity of chronic inflammatory disease was reduced or even inhibited. In addition, spinal cord pathologywas decreased.While the mechanism of protection is unclear, results suggest that hypoxia has therapeutic potential in EAE.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173-85.

    Article  PubMed  CAS  Google Scholar 

  2. Chávez JC, Agani F, Pichiule P, et al. (2000) Expression of hypoxia-inducible factor-1alpha in the brain of rats during chronic hypoxia. J Appl Physiol 89:1937-42.

    PubMed  Google Scholar 

  3. Xu K, Lamanna JC (2006) Chronic hypoxia and the cerebral circulation. J Appl Phys 100:725-30.

    Article  CAS  Google Scholar 

  4. Dore-Duffy P, LaManna JC (2007) Physiologic angiodynamics in the brain. Antioxid Redox Signal 9:1363-71.

    Article  PubMed  CAS  Google Scholar 

  5. Charcot JM(1868)Histologie de la sclérose en plaques.Gazette desHôpitaux civils etmilitaires 41: 554, 557–558, 566.

    Google Scholar 

  6. Sospedra M, Martin R (2005) Immunology of multiple sclerosis. Annu Rev Immuno 23:683-747.

    Article  CAS  Google Scholar 

  7. Barnett MH, Sutton I (2006) The pathology of multiple sclerosis: a paradigm shift. Curr Opin Neurol 19:242-7.

    Article  PubMed  Google Scholar 

  8. Franklin RJ (2002) Why does remyelination fail inmultiple sclerosis? Nat Rev Neurosci 3:705-14.

    Article  PubMed  CAS  Google Scholar 

  9. Trapp BD, Stys PK (2009) Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol 8:280-91.

    Article  PubMed  CAS  Google Scholar 

  10. LaManna JC, Chavez JC, Pichiule P (2004) Structural and functional adaptation to hypoxia in the rat brain. J Exp Biol 207:3163-9.

    Article  PubMed  CAS  Google Scholar 

  11. Puchowicz MA, Koppaka SS, LaManna JC (2009) Brain metabolic adaptations to hypoxia. In: McCandless DW (ed) Metabolic Encephalopathy, Springer, US.

    Google Scholar 

  12. Henry TD (1999) Therapeutic angiogenesis. BMJ 318:1536-9.

    Article  PubMed  CAS  Google Scholar 

  13. Ye L, Haider HK, Jiang SJ, et al. (2004) Therapeutic angiogenesis using vascular endothelial growth factor. Asian Cardiovasc Thorac Ann 12:173-81.

    PubMed  Google Scholar 

  14. Waltenberger J (1998) Therapeutic angiogenesis in the heart using peptide growth factors: Angiogenesis research entering clinical trials. Angiogenesis 2:115-117.

    Google Scholar 

  15. Ylä-Herttuala S, Rissanen TT, Vajanto I, et al. (2007) Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascularmedicine. JAmCollCardiol 49:1015-26.

    Article  Google Scholar 

  16. Bouïs D, Kusumanto Y, Meijer C, et al. (2006) A review on pro- and anti-angiogenic factors as targets of clinical intervention. Pharmacol Res 53:89-103.

    Article  PubMed  Google Scholar 

  17. Santulli G, Ciccarelli M, Palumbo G, et al. (2009) In vivo properties of the proangiogenic peptide QK. J Transl Med 7:41.

    Article  PubMed  Google Scholar 

  18. Humar R, Zimmerli L, Battegay E (2009) Angiogenesis and hypertension: an update. J Hum Hypertens. doi: 10.1038/jhh.2009.63.

    Google Scholar 

  19. Benarroch EE (2009) Hypoxia-inducedmediators and neurologic disease. Neurology 73:560-5.

    Article  PubMed  Google Scholar 

  20. Serebrovskaya TV, Manukhina EB, Smith ML, et al. (2008) Intermittent hypoxia: cause of or therapy for systemic hypertension? Exp Biol Med (Maywood) 233:627-50.

    Article  CAS  Google Scholar 

  21. Gustafsson T, Puntschart A, Kaijser L, et al. (1999) Exercise-induced expression of angiogenesis-related transcription and growth factors in human skeletal muscle. Am J Physiol 276:H679-85.

    PubMed  CAS  Google Scholar 

  22. Ding Y, Li J, Luan X, et al.(2004) Exercise pre-conditioning reduces brain damage in ischemic rats that may be associated with regional angiogenesis and cellular overexpression of neurotrophin. Neuroscience 124:583-91.

    Article  PubMed  CAS  Google Scholar 

  23. Ding YH, Ding Y, Li J, et al. (2006) Exercise pre-conditioning strengthens brain microvascular integrity in a rat stroke model. Neurol Res 28:184-9.

    Article  PubMed  Google Scholar 

  24. Kreipke CW, Morgan R, Kallakuri S, et al. (2007) Behavioral pre-conditioning enhances angiogenesis and cognitive outcome after brain trauma. Neurol Res 29:388-94.

    Article  PubMed  CAS  Google Scholar 

  25. Schroedl C, McClintock DS, Budinger GR, et al. (2002) Hypoxic but not anoxic stabilization of HIF-1alpha requires mitochondrial reactive oxygen species. Am J Physiol Lung Cell Mol Physiol 283:L922-31.

    PubMed  CAS  Google Scholar 

  26. Post DE, Van Meir EG (2001) Generation of bidirectional hypoxia/HIF-responsive expression vectors to target gene expression to hypoxic cells. Gene Ther 8:1801-7.

    Article  PubMed  CAS  Google Scholar 

  27. Grimm C, Wenzel A, Stanescu D, et al. (2004) Constitutive overexpression of human erythropoietin protects the mouse retina against induced but not inherited retinal degeneration. J Neurosci 24:5651-8.

    Article  PubMed  CAS  Google Scholar 

  28. Grimm C, Hermann DM, Bogdanova A, et al. (2005) Neuroprotection by hypoxic preconditioning: HIF-1 and erythropoietin protect from retinal degeneration. Semin Cell Dev Biol 16:531-8.

    Article  PubMed  CAS  Google Scholar 

  29. Anderson J, Sandhir R, Hamilton ES, et al. (2009) Impaired Expression of Neuroprotective Molecules in the HIF-1-alpha Pathway following Traumatic Brain Injury inAgedMice. Journal of Neurotrauma. doi:10.1089/neu.2008-0765

    Google Scholar 

  30. Harten SK, Ashcroft M, Maxwell PH (2009) Prolyl Hydroxlase Domain (PHD) inhibitors: a route to HIF activation & neuroprotection. Antioxidants & Redox Signaling. doi:10.1089/ars.2009.2870. BookID 117032_ChapID 23_Proof# 1 - 13/02/2011

    Google Scholar 

  31. Dore-Duffy P, Washington R, Dragovic L (1993) Expression of endothelial cell activation antigens in microvessels from patients with multiple sclerosis. Adv Exp Med Biol 331:243-8.

    PubMed  CAS  Google Scholar 

  32. Dore-Duffy P, Balabanov R, Rafols J, et al. (1996) Recovery phase of acute experimental autoimmune encephalomyelitis in rats corresponds to development of endothelial cell unresponsiveness to interferon gamma activation. J Neurosci Res 44:223-34.

    Article  PubMed  CAS  Google Scholar 

  33. Dore-Duffy P, Balabanov R, Beaumont T, et al. (1999) Endothelial activation following prolonged hypobaric hypoxia. Microvasc Res 57:75-85.

    Article  PubMed  CAS  Google Scholar 

  34. Milner R, Hung S, Erokwu B, et al. (2008) Increased expression of fibronectin and the alpha 5 beta 1 integrin in angiogenic cerebral blood vessels of mice subject to hypobaric hypoxia. Mol Cell Neurosci 38:43-52.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Dore-Duffy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

Dore-Duffy, P., Wencel, M., Katyshev, V., Cleary, K. (2011). Chronic Mild Hypoxia Ameliorates Chronic Inflammatory Activity in Myelin Oligodendrocyte Glycoprotein (MOG) Peptide Induced Experimental Autoimmune Encephalomyelitis (EAE). In: LaManna, J., Puchowicz, M., Xu, K., Harrison, D., Bruley, D. (eds) Oxygen Transport to Tissue XXXII. Advances in Experimental Medicine and Biology, vol 701. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7756-4_23

Download citation

Publish with us

Policies and ethics