Skip to main content

Scanning Laser Ophthalmoscope-particle Tracking Method to Assess Blood Velocity During Hypoxia and Hyperoxia

  • Conference paper
Book cover Oxygen Transport to Tissue XXIX

Abstract

The main objective was to evaluate a Scanning Laser Ophthalmoscope (SLO) based particle tracking method as a means of quantitative assessment of retinal blood velocity and vessel diameter changes in response to hypoxia and hyperoxia. Retinal blood velocities were measured by tracking fluorescent microspheres (1.0 μm diameter) in anesthetized adult pigmented rats. Velocities were calculated based on microsphere position changes and the recording frame rate. Hypoxia was induced by inspiring a mixture of nitrogen and air and hyperoxia was induced by inspiring 100% oxygen. Average blood velocities during hypoxia obtained for arteries, veins, and small vessels (diameter < 40 μm) were 39.9 ± 9.9, 34.9 ± 2.7, and 8.8 ± 1.8 mm/sec, respectively, whereas during hyperoxia, the average blood velocities obtained were 23.7 ± 6.2, 28.2 ± 2.7, and 7.6 ± 0.7 mm/sec. Hypoxia was found to increase the diameters of arteries by 25%but did not change the diameters of veins; whereas, hyperoxia was found to decrease their diameters by 25% and 18%. Changes detected in vessel diameter and blood velocity suggest that the level of oxygen tension alters retinal hemodynamics. Dynamics of retinal hemodynamics in response to hypoxia and hyperoxia can be assessed using the SLO imaging method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Bill, In: Handbook of Physiology, Section 2, The Cardiovascular System, Circulation of the eye, edited by C.C.M.E. Renkin and S.R. Geiger (Am. Physiol. Soc., Bethesda, MD, 1975), pp. 1001–1033.

    Google Scholar 

  2. J.E. Grunwald, C.E. Riva, S.H. Sinclair, A.J. Brucker, B.L. Petrig, Laser Doppler velocimetry study of retinal circulation in diabetes mellitus, Arch Ophthalmol,104, 991–996 (1986).

    PubMed  CAS  Google Scholar 

  3. V. Patel, S. Rassam, R. Newsom, J. Wiek, E. Kohner, Retinal blood flow in diabetic retinopathy, BMJ, 305, 678–683 (1992).

    PubMed  CAS  Google Scholar 

  4. V. Patel, S.M. Rassam, H.C. Chen, E.M. Kohner, Oxygen reactivity in diabetes mellitus: effect of hypertension and hyperglycaemia, Clin Sci (Lond), 86, 689–695 (1994).

    CAS  Google Scholar 

  5. F. Fillacier, G.A. Peyman, Q. Luo, B. Khoobehi, Study of lymphocyte dynamics in the ocular circulation: technique of labeling cells, Curr Eye Res, 14, 579–584 (1995).

    Article  PubMed  CAS  Google Scholar 

  6. J. Ben-nun, Comparative flow velocity of erythrocytes and leukocytes in feline retinal capillaries, Invest Ophthalmol Vis Sci, 37, 1854–1859 (1996).

    PubMed  CAS  Google Scholar 

  7. R.D. Braun, M.W. Dewhirst, D.L. Hatchell, Quantification of erythrocyte flow in the choroid of the albino rat, Am J Physiol Heart Circ Physiol, 272, 1444–1453 (1997).

    Google Scholar 

  8. B. Khoobehi, G.A. Peyman, Fluorescent labeling of blood cells for evaluation of retinal and choroidal circulation, Ophthalmic Surg Lasers, 30, 140–145 (1999).

    PubMed  CAS  Google Scholar 

  9. S.D. Wajer, M. Taomoto, D.S. McLeod, R.L. McCally, H. Nishiwaki, M.E. Fabry, R.L. Nagel, G.A. Lutty, Velocity measurements of normal and sickle red blood cells in the rat retinal and choroidal vasculatures, Microvasc Res, 60, 281–293 (2000).

    Article  PubMed  CAS  Google Scholar 

  10. B. Khoobehi, B. Shoelson, Y.Z. Zhang, G.A. Peyman, Fluorescent microsphere imaging: a particle-tracking approach to the hemodynamic assessment of the retina and choroids, Ophthalmic Surg Lasers, 28, 937–947 (1997).

    PubMed  CAS  Google Scholar 

  11. E.C. Butcher, I.L. Weissman, Direct fluorescent labeling of cells with fluorescein or rhodamine isothiocyanate. I. Technical aspects, J Immunol Methods, 37, 97–108 (1980).

    Article  PubMed  CAS  Google Scholar 

  12. T.H. Williamson, G.M. Baxter, Central retinal vein occlusion, an investigation by color Doppler imaging. Blood velocity characteristics and prediction of iris neovascularization, Ophthalmology, 101, 1362–1372 (1994).

    PubMed  CAS  Google Scholar 

  13. T. Nagaoka, T. Sakamoto, F. Mori, E. Sato, A. Yoshida, The effect of nitric oxide on retinal blood flow during hypoxia in cats, Invest Ophthalmol Vis Sci, 43, 3037–3044 (2002).

    PubMed  Google Scholar 

  14. H.F. Duijm, A.H. Rulo, M. Astin, O. Maepea, T.J. van den Berg, E.L. Greve, Study of choroidal blood flow by comparison of SLO fluorescein angiography and microspheres, Exp Eye Res, 63, 693–704 (1996).

    Article  PubMed  CAS  Google Scholar 

  15. N. Masaoka, K. Nakaya, Y. Koura, M. Ohsaki, Hemodynamic changes in two patients with retinal circulatory disturbances shown by fluorescein angiography using a scanning laser ophthalmoscope, Retina, 21, 155–160 (2001).

    Article  PubMed  CAS  Google Scholar 

  16. G. Eperon, M. Johhson, N.J. David, The effect of arterial PO2 on relative retinal blood flow in monkeys, Invest Ophtahlmol, 14, 342–352 (1975).

    CAS  Google Scholar 

  17. J. Ahmed, M.K. Pulfer, R.A. Linsenmeier, Measurement of blood flow through the retinal circulation of the cat during normoxia and hypoxemia using fluorescent microspheres, Microvasc res, 62, 143–153 (2001).

    Article  PubMed  CAS  Google Scholar 

  18. A. Deussen, M. Sonntag, R.Vogel, L-arginine-derived nitric oxide: A major determinant of uveal blood flow, Exp Eye Res, 57, 129–134 (1993).

    Article  PubMed  CAS  Google Scholar 

  19. N. Toda, Y. Kitamura, T. Okamura, Role of nitroxidergic nerve in dog retinal arterioles in vivo and arteries in vitro, Am J Physiol, 266, H1985–H1992 (1994).

    PubMed  CAS  Google Scholar 

  20. S. Harino, K. Nishimura, K. Kitanishi, M. Suzuki, P. Reinach, Role of nitric oxide in mediating retinal blood flow regulation in cats, J Ocur Pharmacol Ther, 5, 295–303 (1999).

    Article  Google Scholar 

  21. J.E. Grunwald, C.E. Riva, B.L. Petrig, S.H. Sinclair, A.J. Brucker, Effect of pure O2-breathing on retinal blood flow in normals and in patients with background diabetic retinopathy, Curr Eye Res, 3, 239–241 (1984).

    Article  PubMed  CAS  Google Scholar 

  22. B. Kiss, E. Polska, G. Dorner, K. Polak, O. Findl, G.F. Mayrl, H.G. Eichler, M. Wolzt, L. Schmetterer, Retinal blood flow during hyperoxia in humans revisited: concerted results using different measurement techniques, Microvasc Res, 64, 75–85 (2002).

    Article  PubMed  Google Scholar 

  23. C.E. Riva, J.E. Grunwald, S.H. Sinclair, Laser Doppler Velocimetry study of the effect of pure oxygen breathing on retinal blood flow, Invest Ophthalmol Vis Sci, 34, 47–51 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this paper

Cite this paper

Lorentz, K., Zayas-Santiago, A., Tummala, S., Derwent, J.J.K. (2008). Scanning Laser Ophthalmoscope-particle Tracking Method to Assess Blood Velocity During Hypoxia and Hyperoxia. In: Kang, K.A., Harrison, D.K., Bruley, D.F. (eds) Oxygen Transport to Tissue XXIX. Advances In Experimental Medicine And Biology, vol 614. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74911-2_29

Download citation

Publish with us

Policies and ethics