Acute traumatic brain injury does not exacerbate ALS in the SOD1^{G93A} rat model

TBI does not exacerbate ALS in SOD1 rat

Gretchen M. Thomsen¹, Jean-Philippe Vit^{2,3}, Alexander Lamb⁴, Genevieve Gowing¹, Oksana Shelest¹, Mor Alkaslasi¹, Eric J. Ley^{4,*} and Clive N. Svendsen^{1,2,*}

¹Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA, 90048
²Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA, 90048
³Biobehavioral Research Core, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA, 90048
⁴Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA, 90048

DOI: 10.1523/ENEURO.0059-14.2015

Received: 12 November 2014

Revised: 17 May 2015

Accepted: 21 May 2015

Published: 22 June 2015

Author Contributions: GMT, AL, GG, EJL, CNS designed experiments; GMT, JPV, AL, RE, MA performed research; GMT analyzed data; GMT, EJL, CNS wrote the paper

Funding: ALS Association; Board of Governors Regenerative Medicine Institute;

Conflict of Interest: Authors report no conflict of interest.

This work was supported by the Board of Governors Regenerative Medicine Institute and the ALS Association.

Correspondence should be addressed to Corresponding authors: Clive Svendsen; Clive.Svendsen@cshs.org; (310) 248-8072 and Eric Ley; Eric.Ley@cshs.org; (310) 423-3544

Cite as: eNeuro 2015; 10.1523/ENEURO.0059-14.2015

Alerts: Sign up at eneuro.org/alerts to receive customized email alerts when the fully formatted version of this article is published.
Acute traumatic brain injury does not exacerbate ALS in the SOD1G93A rat model
Manuscript title: Acute traumatic brain injury does not exacerbate ALS in the SOD1^{G93A} rat model

Abbreviated title: TBI does not exacerbate ALS in SOD1 rat

Authors/Affiliations: Gretchen M. Thomsen¹, Jean-Philippe Vit^{2,3}, Alexander Lamb⁴, Genevieve Gowing¹, Oksana Shelest¹, Mor Alkaslasi¹, Eric J. Ley^{4,*}, Clive N. Svendsen^{1,2,*}

¹ Board of Governors Regenerative Medicine Institute, ² Department of Biomedical Sciences, ³ Biobehavioral Research Core, and ⁴Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA, 90048

Author Contributions: GMT, AL, GG, EJL, CNS designed experiments; GMT, JPV, AL, RE, MA performed research; GMT analyzed data; GMT, EJL, CNS wrote the paper

*Corresponding authors:
Clive Svendsen: Clive.Svendsen@cshs.org; (310) 248-8072
Eric Ley: Eric.Ley@cshs.org; (310) 423-3544

Number of figures: 2
Number of tables: 1
Number of multimedia: 0
Number of words in abstract: 184
Number of words for significance statement: 97
Number of words for introduction: 589
Number of words for discussion: 918

Acknowledgements: We thank Dr. Soshana Svendsen for critical review and manuscript editing.

Conflict of interest: Authors report no conflict of interest

Funding sources: This work was supported by the Board of Governors Regenerative Medicine Institute and the ALS Association.
Acute traumatic brain injury does not exacerbate ALS in the SOD1G93A rat model

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease in which upper and lower motor neurons degenerate leading to muscle atrophy, paralysis and death within 3 to 5 years of onset. While a small percentage of ALS cases are genetically linked, the majority are sporadic with unknown origin. Currently, etiological links are associated with disease onset without mechanistic understanding. Of all the putative risk factors, however, head trauma has emerged as a consistent candidate for initiating the molecular cascades of ALS. Here, we test the hypothesis that traumatic brain injury (TBI) in the SOD1G93A transgenic rat model of ALS leads to early disease onset and shortened lifespan. We demonstrate, however, that a one-time acute focal injury caused by controlled cortical impact (CCI), does not affect disease onset or survival. Establishing the negligible involvement of a single acute focal brain injury in an ALS rat model increases the current understanding of the disease. Critically, untangling a single focal TBI from multiple mild injuries provides a rationale for scientists and physicians to increase focus on repeat injuries to hopefully pinpoint a contributing cause of ALS.

Significance statement

Here we show that a one-time focal traumatic brain injury does not affect the disease time-course or survival in the SOD1G93A rat model of ALS. This is important, as head injury has emerged as a strong candidate for initiating the neurodegenerative processes in ALS patients. By showing a lack of effect of acute, moderate/severe focal traumatic brain injury in this genetically pre-disposed model, focus can now be made on other types of CNS injuries including mild repeat traumatic brain injury, or diffuse axonal injury to elucidate the involvement of trauma in the initiation of SOD1 mutation-based ALS.
Introduction

Amyotrophic Lateral Sclerosis (ALS) is the most common motor neuron disease with progressive degeneration of motor neurons in the cortex, brainstem and spinal cord. ALS patients undergo paralysis, respiratory insufficiency, and ultimately death typically within 3 to 5 years of disease onset. Point mutations in various genes, for instance the Cu/Zn superoxide dismutase 1 (SOD1) and the more recently described C9orf72 genes (Rosen et al., 1993, Renton et al., 2011, DeJesus-Hernandez et al., 2011), lead to familial forms of ALS, however, in the majority of patients it is a sporadic disease of unknown origin.

No successful treatments exist for this devastating disease, largely in part because the mechanisms underlying the initiation of ALS pathology and subsequent motor neuron death have yet to be elucidated. This is because the etiology of ALS likely involves a complex interaction between multiple risk factors (Ling et al., 2013). One risk factor may be central nervous system (CNS) injury, given the recognized association between neurodegenerative disease and activities that involve a higher risk for CNS trauma, including participation in professional full-contact sports and military service (Barnes et al., 2014, Mielke et al., 2014, Savica, 2014, Chio et al., 2009). In fact, CNS injury is linked to an increased incidence of motor neuron degeneration (Li et al., 2014, Lehman et al., 2012) and, thus, injury has emerged as a candidate that initiates the molecular cascades that yield neuronal death in ALS (Seelen et al., 2014, Abel, 2007).

CNS injury in humans and ALS rodent models elicits microglial activation in regions such as the spinal cord and brainstem (Evans et al., 2013, Turner et al., 2004, Alexianu et al., 2001). In terms of triggering disease spread, however, early acute glial activation in the spinal cord does not appear to hasten ALS progression. This is highlighted by ALS clinical trials that involve minor damage during spinal cord cell injections with no obvious acceleration of motor
degeneration (Riley et al., 2014, Mazzini et al., 2012). In addition, a more severe injury due to damage following a stab-wound trauma to the SOD1 rat spinal cord also did not accelerate motor neuron degeneration (Suzuki et al., 2010).

These injury studies, and ALS research in general, largely focus on the spinal cord with substantially less focus on the brain even though the cortical upper motor neurons are also vulnerable. Indeed, the brain plays an important role in initiating motor circuitry breakdown in ALS, not by overt cell death, but perhaps by dysfunctional actions that elicit system failure (Thomsen et al., 2014). Therefore, while the effect of injury on the spinal cord has been addressed in both sporadic and SOD1-linked cases, it is now critical to assess the role of brain injury given the novel finding that cortical dysfunction may be a key to motor circuitry breakdown in ALS.

Here we addressed the connection between an acute traumatic brain injury (TBI) and SOD1 mutation-based ALS by using a transgenic rat model harboring a human SOD1 gene mutation (hSOD1^{G93A}) that results in an ALS-like phenotype. Though correlative evidence exists to associate TBI and ALS, it remains unknown whether an affect on ALS may be linked to repeat injury or if a single TBI is sufficient. As such, we tested whether a moderate or severe focal TBI administered one time to the SOD1^{G93A} rat would lead to earlier onset of ALS, compromised motor function, and shorter lifespan in a genetically pre-disposed model. We found that a one-time focal trauma did not alter the time course of disease or death within this ALS rat model.

Methods

Animals: Sprague-Dawley wildtype (WT) and SOD1^{G93A} (“SOD1”, herein) transgenic rats were housed under National Institute of Health guidelines and all animal procedures were performed in accordance with the Author University animal care committee’s regulations. This colony of transgenic rats provides later onset than the original model published by Howland and...
coliagues (Howland et al., 2002), with endpoint occurring at 180 ± 15.2 days. Reminiscent of human pathology, disease onset in hindlimbs and/or forelimbs is unpredictable and overt paresis progresses to complete paralysis. Some animals also display significant atrophy of trunk and neck muscles. As it has been previously shown that male and female SOD1 rats do not exhibit anatomical differences over time or show differences in disease onset or survival, (Thomsen GM, 2014) both male and female rats were used in these studies. Groups: 120d, moderate: n=4 WT TBI, n=6 SOD1 TBI, n=6 SOD1 sham; 90d, severe: n=4 WT sham, n=6 WT TBI, n=7 SOD1 TBI, n=8 SOD1 sham.

Controlled cortical impact (CCI) injury: At the approximate age of 90 or 120 days, male and female presymptomatic rats were anesthetized with isofluorane and positioned within a rat stereotaxic frame. Following a left longitudinal scalp incision, a 6 mm diameter craniotomy was made centered at Bregma and 2.5 mm lateral to the midline. For rats at 120 days, “moderate” cortical injury was performed with a flat, 3 mm diameter metal tip attached to the CCI device, at a velocity of 6 m/s, to a depth of 1.5 mm below the dura with a dwell time of .2s. For rats at 90 days, “severe” cortical injury was performed at the same settings using a 4 mm diameter tip and a depth of 2.5 mm.

Tissue collection: Animals were euthanized by a ketamine/xylazine cocktail administration followed by transcardial perfusion with .9% saline followed by 4% paraformaldehyde (PFA). Brain tissue was collected, post-fixed in PFA overnight and stored in 30% sucrose. Brains were sectioned at 35 μm using a microtome and collected as free-floating sections for histology.

Contusion volume analysis: Brains were stained for cresyl violet and digital photographs of mounted sections were assessed for contusion volume using Image J software. Briefly, regions of interest were drawn around the entire contralateral and ipsilateral cortices and the percent
tissue loss was calculated by comparing the area of ipsilateral versus contralateral. Six brain
sections per rat, spaced 240um apart were used for analysis.

Motor behavior assessment: A blinded observer quantified several aspects of motor behavior,
as defined below. Baseline behavioral testing was performed the week prior to injury and
consisted of recording two sessions each of rotarod, grip strength (forelimb and hindlimb) and
Basso, Beattie and Bresnahan (BBB) analysis. Post-injury behavioral testing occurred on days
1, 3 and 7 after CCI and then continued weekly thereafter until SOD1 rats began showing signs
of disease, at which point BBB scoring (see below) increased to twice per week. SOD1 rats
were euthanized at disease endpoint (defined below) along with age-matched WT controls.

- Rotarod: To test balance and motility, rats were placed on a slowly rotating rod (3 inches in
diameter, www.sandiegoinstruments.com) for 210 seconds per trial. The speed was set to start
at 3 rpm and was constant for the first 30 seconds then accelerated progressively for 3 minutes
to reach the speed of 30 rpm. On each session day, the rats were given 3 trials separated by 30
minutes and the times spent on the rod were averaged for analysis. Rotarod testing was not
performed for the experiment involving TBI at P120 in order to avoid unnecessary stress on the
rats.

- Grip Strength: Each rat was allowed to grip, with either forelimbs or hindlimbs, a grid bar
attached to a Chatillon digital force gauge (www.sandiegoinstruments.com) and was then gently
pulled back until the bar was released. Three measurements of the peak force in grams for both
forelimbs and hindlimbs were averaged for analysis.

- The BBB locomotor rating scale (Basso et al., 1995) is used to assess an animal's ability to
walk around its environment and can quantify the degree of limb paralysis in SOD1G93A rats and
mice. The 21-point BBB scoring is an open field locomotor test of limb function, with a 21 score
indicating coordinated limb movement, consistent toe clearance and parallel paw placement, and a 0 score indicating no observable limb movement. BBB locomotor ratings provide an indication of when paralysis starts in any limb and the degree of progression continuing until the animal’s endpoint. BBB scores and body weights were assessed once or twice weekly by an observer blinded for genotype and treatment, starting the week prior to cortical injury (which occurred at p90 or p120), and continuing until disease endpoint. Disease onset was classified as when an animal displayed a BBB score of 15 or lower. Endpoint was classified as when a rat was no longer able to “right” itself within 25 seconds of being placed on its side. At endpoint the animal will typically have lost 30% of its body weight and have a BBB score at or below 5 in at least one limb.

Statistical analysis: Statistical analyses were performed using Graph Pad Prism software (San Diego, CA). Student’s t-tests, and two-way ANOVA using Bonferroni post-hoc analyses were performed to determine standard error of the mean (S.E.M) with a 95% confidence level. Kaplan Meier survival curves were analyzed by the Log Rank Test and comparisons of median disease durations and survival times were analyzed by the Wilcoxon Signed Rank Test.
Statistical Table

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Data structure</th>
<th>Type of test</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a Fig. 1B: Lesion size column graph (WT vs TBI)</td>
<td>Normal Distribution</td>
<td>t-test</td>
<td>0.906</td>
</tr>
<tr>
<td>b Fig. 1C: HL grip strength graph: early post-injury time points</td>
<td>Normal Distribution</td>
<td>two-way ANOVA: interaction</td>
<td>0.689</td>
</tr>
<tr>
<td>c Fig. 1D: FL grip strength graph: early post-injury time points</td>
<td>Normal Distribution</td>
<td>two-way ANOVA: interaction</td>
<td>0.739</td>
</tr>
<tr>
<td>d Fig. 1E: HL BBB graph: early post-injury time points</td>
<td>Normal Distribution</td>
<td>two-way ANOVA: interaction</td>
<td>0.27</td>
</tr>
<tr>
<td>e Fig. 1F: FL BBB graph: early post-injury time points</td>
<td>Normal Distribution</td>
<td>two-way ANOVA: interaction</td>
<td>0.73</td>
</tr>
<tr>
<td>f Fig. 1G: Onset Kaplan Meier curves</td>
<td>Normal Distribution</td>
<td>Log-Rank Test</td>
<td>0.774</td>
</tr>
<tr>
<td>g Fig. 1H: Survival Kaplan Meier curves</td>
<td>Normal Distribution</td>
<td>Log-Rank Test</td>
<td>0.74</td>
</tr>
<tr>
<td>h Fig. 1C: HL grip strength graph: all time points</td>
<td>Normal Distribution</td>
<td>two-way ANOVA: interaction</td>
<td>0.991</td>
</tr>
<tr>
<td>i Fig. 1D: FL grip strength graph: all time points</td>
<td>Normal Distribution</td>
<td>two-way ANOVA: interaction</td>
<td>0.955</td>
</tr>
<tr>
<td>j Fig. 1E: HL BBB graph: all time points</td>
<td>Normal Distribution</td>
<td>two-way ANOVA: interaction</td>
<td>0.986</td>
</tr>
<tr>
<td>k Fig. 1F: FL BBB graph: all time points</td>
<td>Normal Distribution</td>
<td>two-way ANOVA: interaction</td>
<td>0.999</td>
</tr>
<tr>
<td>l Fig. 2C: Rotarod graph early post-injury time points (WT: TBI vs sham)</td>
<td>Normal Distribution</td>
<td>two-way ANOVA: treatment</td>
<td>0.0006</td>
</tr>
<tr>
<td>m Fig. 2C: Rotarod graph early post-injury time points (SOD1: TBI vs sham)</td>
<td>Normal Distribution</td>
<td>two-way ANOVA: treatment</td>
<td><.00001</td>
</tr>
<tr>
<td>n Fig. 2D: HL grip strength graph all time points (SOD1: TBI vs sham)</td>
<td>Normal Distribution</td>
<td>two-way ANOVA: treatment</td>
<td><.00001</td>
</tr>
<tr>
<td>o Fig. 2E: FL grip strength graph all time points (SOD1: TBI vs sham)</td>
<td>Normal Distribution</td>
<td>two-way ANOVA: treatment</td>
<td>0.236</td>
</tr>
<tr>
<td>p Fig. 2F: Onset Kaplan Meier curves</td>
<td>Normal Distribution</td>
<td>Log-Rank Test</td>
<td>0.716</td>
</tr>
<tr>
<td>q Fig. 2G: Survival Kaplan Meier curves</td>
<td>Normal Distribution</td>
<td>Log-Rank Test</td>
<td>0.157</td>
</tr>
<tr>
<td>r Fig. 2C: Rotarod graph all time points</td>
<td>Normal Distribution</td>
<td>two-way ANOVA: interaction</td>
<td>0.829</td>
</tr>
<tr>
<td>s Fig. 2H: HL BBB graph: all time points</td>
<td>Normal Distribution</td>
<td>two-way ANOVA: interaction</td>
<td>0.999</td>
</tr>
<tr>
<td>t Fig. 2I: FL BBB graph: all time points</td>
<td>Normal Distribution</td>
<td>two-way ANOVA: interaction</td>
<td>0.97</td>
</tr>
</tbody>
</table>
Results

A single moderate TBI administered at 120 days does not alter disease progression or lifespan. An association between head injury and increased incidence of neurodegeneration has been suggested (Mannix et al., 2013, Mielke et al., 2014, Loane et al., 2014). To test whether this is true for a genetically pre-disposed population of ALS, we assessed the effects of a single moderate TBI on disease onset, motor function and lifespan in the SOD1 rat model of ALS.

Controlled cortical impact (CCI) is an established method to induce a focal lesion in the cortex as a rodent model of TBI (Dixon et al., 1991, Goodman et al., 1994, Xiong et al., 2013). Baseline testing for strength and motor function the week prior to injury showed no differences between groups (not shown). A moderate CCI administered unilaterally at postnatal day 120 resulted in a cortical lesion with significant tissue loss (Fig. 1A). Cresyl violet staining showed that SOD1 and WT had a comparable CCI, which is highlighted by the quantification of percent cortical tissue volume loss in Fig. 1B (p=.906). While the core of this injury was centered over the motor cortex at bregma, tissue damage was extensive and spanned from the frontal cortex, on average 3 mm anterior to bregma to 3 mm posterior to bregma (Fig. 1A). Although there was a significant, 30% loss of tissue (ipsilateral versus contralateral) in rats receiving a TBI, there were no observable functional deficits, and motor function as assessed by hindlimb/forelimb grip strength and hindlimb/forelimb BBB scores was similar among SOD1 sham, SOD1 TBI and WT TBI groups in the early time period following injury (time points P126-P153 in Fig. 1C-F, p=.689, 739°, .270°, .730°, respectively).

Post-injury behavioral testing began on days 1, 3 and 7 after CCI and then continued weekly thereafter. While this moderate TBI did not produce an initial effect on motor function, we hypothesized that TBI would still affect disease onset, progression and lifespan in the SOD1 rat
compared to SOD1 sham rats. Assessment at later time points following injury, however, showed that the SOD1 TBI rats had no difference in disease onset \((p=.774^f, \text{Fig. 1G})\) or survival \((p=.740^g; \text{Fig. 1H})\) relative to SOD1 sham rats. In addition, injury did not cause a significant premature decrease of hindlimb \((p=.991^h, \text{Fig. 1C})\) or forelimb \((p=.955^i, \text{Fig. 1D})\) grip strength, and the BBB score, which is better related to the progression of ALS-associated paralysis, demonstrated no effects of TBI on either hindlimb \((p=.986^j, \text{Fig. 1E})\) or forelimb \((p=.999^k, \text{Fig. 1F})\) function. As the injury was unilateral in the cortex, separate BBB analysis of right and left forelimb and hindlimb motor function was performed. The ipsilateral:contralateral ratios for disease onset and progression remained close to 1 during the course of disease in injured versus sham rats (data not shown), highlighting that the limbs associated with the injured brain region were not affected differently than the limbs associated with the uninjured brain region. Together, these results suggest that a single moderate TBI in the postnatal day 120 SOD1 rat does not compromise disease onset, motor function or lifespan.

A single severe TBI administered at 90 days does not alter disease progression or lifespan

It is possible that older ALS rats receiving a moderate TBI were unaffected because this TBI model was not sufficiently severe and/or because the older age did not provide sufficient time for TBI-induced cellular changes to accumulate and thereby alter disease development. As such, we next assessed disease onset, motor function and lifespan after a more severe CCI administered at an earlier time point (postnatal day 90), in order to allow the downstream effects of the insult to accumulate over time. This injury resulted in a more significant loss of tissue than in the previous experiment (Fig. 2A), with cresyl violet staining and quantification of lesion size in both WT and SOD1 TBI rats showing a 45% loss of cortical tissue (ipsilateral, relative to the contralateral cortex, Fig. 2B). While the core of this injury was centered over the motor cortex at
bregma, tissue damage was extensive and spanned from the frontal cortex, on average 4 mm anterior to bregma to 4 mm posterior to bregma (Fig. 2A). Baseline testing the week prior to injury revealed no differences in motor function among any of the groups (not shown). For this experiment, the rotarod test was added as an additional measure of motor function. Post-injury behavioral testing began on days 1, 3 and 7 after CCI and then continued weekly thereafter. Using this test, significant functional deficits resulting from TBI were observed, as rotarod performance of WT and SOD1 rats with severe TBI during the early time points after injury was significantly lower compared to their respective baseline performance and relative to their sham counterparts (time points P91-P101 in Fig. 2C, \(p = .0006 \) WT sham vs WT TBI, \(p < .00001 \) SOD1 sham vs SOD1 TBI). Additionally, unlike previous behavioral results following only a moderate injury, SOD1 rats with severe TBI were significantly weaker throughout the study in their hindlimbs (treatment effect \(p < .0001 \), Fig. 2D) but not forelimbs (\(p = .236 \), Fig. 2E), relative to SOD1 sham controls. While these animals showed a clear reduction in overall hindlimb strength following a severe CCI, these behavioral changes did not translate into an earlier disease onset (\(p = .716 \), Fig. 2F) or shortened lifespan (\(p = .157 \), Fig. 2G) in SOD1 rats with TBI relative to SOD1 sham rats. Furthermore, SOD1 rats receiving a severe TBI showed no premature decline in motor function compared to SOD1 sham rats, as demonstrated by the rotarod performance (interaction of treatment x age \(p = .829 \), Fig. 2C) and the BBB score for hindlimb (\(p = .999 \), Fig. 2H) or forelimb function (\(p = .970 \), Fig. 2I). Similar to the moderate TBI, as the injury was unilateral in the cortex, separate BBB analysis of right and left forelimb and hindlimb motor function was performed. The ipsilateral:contralateral ratios for disease onset and progression remained close to 1 during the course of disease in injured versus sham rats (data not shown), highlighting that the limbs associated with the injured brain region injury were not affected differently than the limbs associated with the uninjured brain region. Collectively, these results establish that even a severe TBI, administered to young SOD1 rats to allow the effects of the insult to accumulate over time, did not alter ALS disease manifestation.
Discussion

Clear, causative evidence linking traumatic events to incidences of ALS has not been established and our findings do not support an obvious involvement of acute focal brain trauma in triggering the onset or worsening of the disease in a genetically susceptible ALS population.

While there is an established association between neurodegenerative disease and participation in professional sports including boxing, football, soccer, as well as military service, the common factors that cause this remain to be demonstrated (Barnes et al., 2014, Mielke et al., 2014, Savica, 2014, Chio et al., 2009). Though these activities are high risk for trauma to the CNS, which could be the common factor that triggers neurodegenerative pathology, other stressors might also be the cause. For instance, physical stress might be related, given the higher incidence of ALS in soccer players with lengthy careers and with midfield positions that require excess running, as well as in tri-athletes (Gotkine et al., 2014, Beghi et al., 2010). This, however, remains controversial (Pupillo et al., 2014, Veldink et al., 2005).

While injury has emerged as a candidate for initiating the molecular cascades that yield neuronal death in ALS (Seelen et al., 2014, Abel, 2007), CCI did not affect disease onset in the SOD1 rat model. While extrapolating from the rodent to the human condition requires caution, given that these rats are genetically pre-disposed to ALS using the human mutant SOD1 gene, sufficient common underlying mechanisms likely make these rats a reliable representation for the lack of effect on disease progression following a single traumatic insult in the genetically susceptible population. An additional caveat comes from the fact that ALS is primarily a sporadic disease. It is possible that a one-time trauma elicits a different environmental interaction among sporadic ALS patients and it should be considered that these results are only directly related to this SOD1 mutation-based ALS model. Therefore, additional, undefined environmental factors might be needed in conjunction with the acute brain injury in order to trigger or enhance disease spread. Finally, while the well-characterized SOD1 rat is a widely
accepted and used model of ALS (Howland et al., 2002), it is important to consider that other genetic mutations in addition to this SOD1^{G93A} lead to familial onset. Therefore, while acute injury in this SOD1 model did not affect disease manifestation, there could be an affect with different transgenic models of ALS.

The contribution of each major component of the motor neuron pathway (brain, spinal cord, muscle) is to the origin of ALS remains unclear. Previous studies assessing the spinal cord have shown that subtle damage in ALS patients following needle injections (Riley et al., 2014, Mazzini et al., 2012) and even severe damage resulting from stab-wound trauma in the SOD1 rat (Suzuki et al., 2010) did not accelerate motor neuron degeneration. We now demonstrate that acute damage to the brain does not negatively impact disease onset, behavior or lifespan in this ALS rat model. The lack of effect following brain damage was surprising given the recent finding that the brain plays an important role in initiating motor circuitry breakdown in this same model (Thomsen et al., 2014). However, it may be that the brain is involved in ALS, not by overt cell death or cell loss (as induced with this CCI model), but rather by means of dysfunctional actions that then elicit system failure. Indeed, SOD1 rats at postnatal day 120 are behaviorally presymptomatic and do not show overt loss of corticospinal motor neurons but, critically, they already have significant loss of spinal motor neurons (Thomsen et al., 2014). This loss of motor neurons is likely the result of cellular stressors or toxic compounds that accumulate, and possibly even spread in a prion-like fashion over time (Grad and Cashman, 2014, Polymenidou and Cleveland, 2011). This fits with a recent report showing a clear link between aging and the development of ALS (Das and Svendsen, 2015). Given these recent data sets, a late TBI may not provide time for deleterious effects of acute brain injury to accumulate and negatively impact disease manifestation. However, a more severe injury at early time points did not affect disease either and therefore, if subtle cortical dysfunction is key to motor circuitry breakdown in ALS, a milder insult might trigger a system breakdown that is missed with the model of TBI used in this
study, which is focal, severe and causes a significant loss of brain tissue. This may not accurately represent athletes and veterans who may undergo more mild, and perhaps more repetitive instances of physical stress and/or trauma and therefore injury models that might better represent these conditions, such as diffuse axonal injury, or mild insults that are either repetitive or global or (Young, 2002, Choo et al., 2009, Jin et al., 2014, Mierzwa et al., 2014), should still be assessed (Angoa-Perez et al., 2014, Mannix et al., 2013, Prins et al., 2010).

Correlative evidence has suggested that TBI is linked with ALS, but it is unknown whether a single injury is sufficient to hasten disease pathology. We show here that a one-time focal cortical trauma did not alter SOD1 rat disease onset, progression or death. Given the importance of cortical dysfunction in initiating ALS (Thomsen et al., 2014), it was vital to uncover this minimal involvement of a single acute brain injury. While the role of multiple, milder brain injuries is still open, the new understanding that a single focal TBI does not exacerbate ALS, at least in a genetically pre-disposed population, narrows the search for this disease's elusive etiology.
References

GOTKINE, M., FRIEDLANDER, Y. & HOCHNER, H. 2014. Triathletes are over-represented in a population of patients with ALS. *Amyotroph Lateral Scler Frontotemporal Degener*, 1-3.

RENTON, A. E., MAJOUNIE, E., WAITE, A., SIMON-SANCHEZ, J., ROLLINSON, S., GIBBS, J. R.,
SCHYMICK, J. C., LAAKSOVIRTA, H., VAN SWIETEN, J. C., MYLLYKANGAS, L., KALIMO,
PAETAU, A., ABRAMZON, Y., REMES, A. M., KAGANOVICH, A., SCHOLZ, S. W.,
DUCKWORTH, J., DING, J., HARMER, D. W., HERNANDEZ, D. G., JOHNSON, J. O., MOK,
RYTEN, M., TRABZUNI, D., GUERREIRO, R. J., ORRELL, R. W., NEAL, J., MURRAY, A.,
PEARSON, J., JANSEN, I. E., SONDERVAN, D., SEELAAR, H., BLAKE, D., YOUNG, K.,
HALLIWELL, N., CALLISTER, J. B., TOULSON, G., RICHARDSON, A., GERHARD, A.,
SNOWDEN, J., MANN, D., NEARY, D., NALLS, M. A., PEURALINNA, T., JANSSON, L.,
ISOVIITA, V. M., KAIRORINNE, A. L., HOLTTA-VUORI, M., IKONEN, E., SULKAVA, R.,
BENATAR, M., WUU, J., CHIO, A., RESTAGNO, G., BORGHERO, G., SABATELLI, M.,
CONSORTIUM, I., HECKERMAN, D., ROGAEVA, E., ZINMAN, L., ROTHSTEIN, J. D.,
SENDTNER, M., DREPPER, C., EICHLER, E. E., ALKAN, C., ABDULLAEV, Z., PACK, S. D.,
DUTRA, A., PAK, E., HARDY, J., SINGLETON, A., WILLIAMS, N. M., HEUTINK, P.,
PICKERING-BROWN, S., MORRIS, H. R., TIENARI, P. J. & TRAYNOR, B. J. 2011. A
hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-
linked ALS-FTD. Neuron, 72, 257-68.
RILEY, J., GLASS, J., FELDMAN, E. L., POLAK, M., BORDEAU, J., FEDERICI, T., JOHE, K.
BOULIS, N. M. 2014. Intraspinal stem cell transplantation in amyotrophic lateral
sclerosis: a phase I trial, cervical microinjection, and final surgical safety outcomes.
Neurosurgery, 74, 77-87.
ROSEN, D. R., SIDDIQUE, T., PATTERSON, D., FIGLEWICZ, D. A., SAPP, P., HENTATI, A.,

Figure Legends

Figure 1. (A) Coronal brain sections (420 μm apart, notched on the ipsilateral underside prior to sectioning) stained with cresyl violet from a rat that was administered a moderate CCI at P120. (B) Quantitative analysis of the cortical lesion site after TBI revealed that this moderate CCI injury resulted in an ~30% loss of tissue in both WT and SOD1 rats (30.5 ±3.7% (SEM) in WT and 30.4 ±1.1% in SOD1 rats, ipsilateral tissue loss, relative to the contralateral cortex). This injury did not result in overt functional deficits in either WT or SOD1 rats, relative to their sham counterparts, during the early time points after injury (time points P126-P153) as assessed by (C) hindlimb and (D) forelimb grip strength, as well as (E) hindlimb and (F) forelimb BBB scores. Injured SOD1 rats showed no differences in strength or motor function relative to SOD1 sham rats at later time points (C-F) and there was no effect of TBI on (G) disease onset or (H) survival, supporting the idea that a one-time acute moderate TBI in rats close to disease onset does not predispose earlier onset or death. Scale bar = 2 mm.

Figure 2. (A) Coronal brain sections (420 μm apart, notched on the contralateral underside prior to sectioning) stained with cresyl violet from a rat administered a severe CCI at P90. (B) Quantitative analysis of the cortical lesion site after TBI revealed that this severe CCI injury resulted in an ~45% loss of tissue in both WT and SOD1 rats (44.3 ±3.3% (SEM) in WT and 48.4 ±3.5% in SOD1, ipsilateral tissue volume loss, relative to the contralateral cortex). This
severe CCI injury resulted in significant early post-injury deficits (graph time points P91-P97) in both WT and SOD1 injured rats, relative to their sham counterparts in (C) rotarod performance.

Relative to SOD1 sham rats, injured SOD1 rats showed a significant overall decrease due to injury in (D) hindlimb, but not (E) forelimb grip strength. However, measures of disease such as (F) onset, (G) survival, (H) hindlimb and (I) forelimb BBB scores remained unchanged relative to SOD1 sham controls indicating that a one-time severe acute TBI at an early presymptomatic time point does not affect the disease onset or death in these rats. Scale bar = 2 mm.
Figure 1

A

B
Contusion volume (moderate TBI)

% Tissue loss

WT
SOD1

C
Hindlimb grip strength

% Baseline

Age (days)

D
Forelimb grip strength

% Baseline

Age (days)

WT TBI
SOD1 TBI
SOD1 sham

E
Hindlimb BBB

BBB score

Age (days)

F
Forelimb BBB

BBB score

Age (days)

G

Day of onset

% of SOD1/PHα1

SOD1 sham
SOD1 TBI

H
Survival days

% of SOD1/PHα1

SOD1 sham
SOD1 TBI