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Abstract
Despite the discovery of gene variants linked to memory performance, understanding the genetic basis of adult human
memory remains a challenge. Here, we devised an unsupervised framework that relies on spatial correlations between
human transcriptome data and functional neuroimaging maps to uncover the genetic signatures of memory in
functionally-defined cortical and subcortical memory regions. Results were validated with animal literature and showed
that our framework is highly effective in identifying memory-related processes and genes compared to a control
cognitive function. Genes preferentially expressed in cortical memory regions are linked to memory-related processes
such as immune and epigenetic regulation. Genes expressed in subcortical memory regions are associated with
neurogenesis and glial cell differentiation. Genes expressed in both cortical and subcortical memory areas are involved
in the regulation of transcription, synaptic plasticity, and glutamate receptor signaling. Furthermore, distinct memory-
associated genes such as PRKCD and CDK5 are linked to cortical and subcortical regions, respectively. Thus, cortical
and subcortical memory regions exhibit distinct genetic signatures that potentially reflect functional differences in
health and disease, and nominates gene candidates for future experimental investigations.
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Introduction
Memory function is crucial for everyday life, ranging

from mental arithmetic to long-term planning. Human

memory function is well characterized in terms of neural
correlates associated with behavior and mental disorders.
Insights from fMRI and lesion studies led to an under-
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Significance Statement

The anatomic and functional aspects of human memory are well characterized, but its biological mecha-
nisms are poorly understood. Here, to uncover genetic signatures associated with human memory function,
we analyzed spatial correlations between micro-scale gene expression and macro-scale neuroimaging
maps to derive memory-related biological processes and genes in an unsupervised manner. We found the
gene signatures of cortical and subcortical memory to be largely distinct and are associated with memory.
We identified less characterized memory-associated genes as well. Furthermore, our framework demon-
strated effectiveness and precision in identifying gene signatures related to memory versus another function
as a control. Overall, our work provides a human-centric approach to understanding the genetics of
cognition and identifies potential gene candidates for future experimental investigations.
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standing of cortical and subcortical memory regions as
functionally distinct areas, subsumed under the broad
umbrella of memory function (LaBar and Cabeza, 2006;
Squire and Wixted, 2011). Yet, despite the fact that mem-
ory ability is highly heritable, with genetic risk factors for
memory disorders, the genetic signature underlying hu-
man memory remains poorly understood (Papassotiro-
poulos and de Quervain, 2011; Kandel et al., 2014;
Freudenberg-Hua et al., 2018). Our knowledge of human
memory genes is largely based on interindividual variation
in genomes [e.g., genome-wide association studies
(GWAS)] and the short-term temporal dynamics of mem-
ory function (Berto et al., 2017). However, there is emerg-
ing interest in using the spatial dimension of gene
expression to identify genetic profiles of functional net-
works, by integrating human brain transcriptomes and
neuroimaging maps (Yarkoni et al., 2011; Hawrylycz et al.,
2012; Ritchie et al., 2018). Such approaches based on
spatial expression patterns may help answer a key ques-
tion: Are there genes associated with general memory
regions in the adult human brain? This may provide un-
precedented insight into biological processes and genes
associated with human memory, and propose potential
candidates for further experimental investigation.

To identify such adult human genes associated with gen-
eral memory, we rely on a spatial correlation method (Fox
et al., 2014). The method identifies cognition-associated
genes that have a high spatial correlation between its gene
expression and a neuroimaging map that represents the
relevance of each area for memory (Fig. 1A,B). This ap-
proach assumes that genes involved in memory should be
highly expressed in the brain areas highly relevant for
memory. For instance, this relationship was observed in
the case of reward-associated gene DRD2 in reward pro-
cessing areas (Mengod et al., 1992; Pappata et al., 2002;
Schott et al., 2008). For the genetic expression and func-
tional maps, we used the Allen Human Brain Atlas (AHBA)
transcriptome and the Neurosynth “memory” neuroimag-
ing map.

We then identified memory-related genetic profiles in an
unsupervised manner with gene set enrichment analysis
(GSEA; Fig. 1C). Due to the correlational nature of the spatial
correlation analysis, we drew on biological knowledge data-
bases (i.e., enrichment analyses with the Gene Ontology
library) to guide our identification of biological processes and
genes associated with memory. To identify cortex-specific
and subcortex-specific memory-associated genes, we
compared the differences between their respective gene

profiles (Fig. 1D). As there are genes that are involved in
general memory across cortical and subcortical regions
(Gallo et al., 2018), we also characterized the overlap
between cortical-subcortical genetic profiles (Fig. 1D).
Furthermore, to identify candidate genes, we identified
the top-10 genes most likely associated with memory with
leading-edge analysis (LEA; Fig. 1E). We then validated
our results by verifying that the genetic profiles corrobo-
rate with experimental literature. Finally, we assessed
whether our approach was effective and precise (Fig.
1F,G).

Because of their common and critical involvement in
general memory, we analyzed both cortical and subcorti-
cal areas involved in memory. Of note, previous studies
on functional networks mainly focused on cortical or sub-
cortical analyses due to disparate expression profiles.
This may be because of marked differences in neuronal
composition, number of layers, and connectivity (O’Leary
and Koester, 1993; Yushkevich et al., 2009; Modha and
Singh, 2010; Kim et al., 2015). At the genetic level, these
differences are mirrored by distinct patterns of both gene
expression intensity and variability (Hawrylycz et al., 2012;
Richiardi et al., 2015; Fox et al., 2014). Thus, we analyzed
their spatial correlations separately, as combining both in
the spatial correlation analysis would capture the gross
cortico-subcortical differences in expression intensity in-
stead of meaningful inter-regional differences in genetic
expression.

Despite a common involvement in general memory, we
found largely distinct memory-related biological processes and
genes across cortical and subcortical regions. Cortical
processes included immune and epigenetic regulation;
subcortical processes included neurogenesis and glial
cell differentiation. Genes shared across cortical-
subcortical regions were involved in the regulation of
transcription, synaptic plasticity and glutamate receptor
signaling. We show that our approach identified a greater
number of memory genes in the memory analysis than
expected by chance, and more memory genes than motor
function genes. These results provide a better under-
standing of genetics associated with human memory, and
nominate candidate genes for future experimental inves-
tigations.

Materials and Methods
AHBA transcriptome

The AHBA transcriptome was generated from the nor-
malized mRNA microarray sampling of a combined 3702
sampling sites across six donor brains (Hawrylycz et al.,
2012; N � 6 left hemispheres, N � 2 right hemispheres;
Fig. 1A; see Extended Data Fig. 1-1 for an example visu-
alization of a gene). The donors were three white males,
two African-American males and one Hispanic female.
Donor age ranged from 24 to 57, mean donor age was
42.5 years (SD � 11.2 years), Data from all six donors was
horizontally concatenated into a .csv file, with one probe
per row. For more details on the dataset and data collec-
tion procedures, see http://help.brain-map.org/display/
humanbrain/Documentation.
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Figure 1. Overview of genetic signature discovery framework. A, The AHBA and Neurosynth neuroimaging maps, and their
preprocessing and integration into a common neuroimaging template space. B, Calculation of spatial similarity between the maps
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Neurosynth memory association map
Neurosynth ‘memory’ and ‘motor’ association maps [Mon-

treal Neurologic Institute 152 (MNI152) space, thresholded FDR
� 0.01] were used as neuroimaging data for the memory
and motor functions (Fig. 1A; see Extended Data Fig. 1-2
for a visualization of the Neurosynth memory and motor
maps). These cognitive functions were chosen as they
were largely functionally and anatomically distinct and
were constructed from a similar number of studies
(Nmemory � 2744, Nmotor � 2565). Neurosynth quantifies
the relevance of each voxel to the user-specified search
terms (e.g., memory) based on a database of neuroimag-
ing studies. In the example of the memory map, each
voxel is assigned a z score that reflects the preferential
association of that voxel with memory, instead of other
functions. For instance, the large positive z score in the
hippocampus means that studies whose abstracts in-
clude the word memory are more likely to report hip-
pocampus engagement than studies that do not include
the word memory (Yarkoni et al., 2011). Negative z scores
indicate a higher correlation with other search terms un-
related to memory, and thus were excluded from our
analyses. For broad cognitive function domains, single
terms enable the generation of maps that approximate the
target cognitive process reasonably well (Yarkoni et al.,
2011). Therefore, we used memory and motor as our
search terms to derive the memory and motor association
maps. Note that in the example of memory, this approach
resulted in inclusion of a broad range of subfunctions,
such as working memory and long-term memory. This
allowed for a broader and more inclusive definition of
memory and motor function for the subsequent identifi-
cation of their genetic signatures. In the generation of
such maps, it is possible that the foci identified by the
automatic coordinate extraction process of Neurosynth
may be inaccurate due to different data formats of online
neuroimaging journals and sites. However, when com-
pared with the gold standard of manually curated activa-
tion foci in the Surface Management Systems Database
(SumsDB), automatically extracted coordinates shows
high sensitivity (84%) and specificity (97%; Yarkoni et al.,
2011). As such, the memory and motor neuroimaging
maps used are reasonable approximations of regions
involved in general memory and motor function.

Preprocessing of transcriptome
We followed preprocessing steps as outlined in

Arnatkevic̆iūtė et al. (2019), including the brain atlas used

to delineate cortical and subcortical regions. Note that
this atlas from Arnatkevic̆iūtė et al. (2019) differs from the
modified Brodmann atlas used by AHBA, and the hip-
pocampus was relabeled as a subcortical instead of a
cortical region in line with human neuroimaging conven-
tions (Hawrylycz et al., 2012; Ji et al., 2019; list of cortical
and subcortical areas in Extended Data Fig. 1-3). In pre-
processing, probes were first reannotated with the Rean-
notator package. We excluded the probes which had
�50% samples exceeding the background expression
level. For each gene, we selected the probe with the
highest differential stability score, i.e., with the least spa-
tial variability across donors. The AHBA data were nor-
malized (z score) for each donor. Cortical and subcortical
regions were normalized separately. This was done to
account for individual and cortico-subcortical differences
in gene expression (Hawrylycz et al., 2011). This returned
a 15,625 gene-by-1285 brain sample matrix for the left
cortex, and 15,625-by-497 matrix for the left subcortex,
respectively. This gave an individual average of 214 left
cortical (range: 175–259) and 83 left subcortical samples
per donor (range: 59–115). In the subsequent step below,
this was further restricted to the brain regions of interest in
co-registration. With the usage of a different brain atlas
from AHBA, it is possible that our re-annotation of regions
as cortical or subcortical areas may be inaccurate and
may affect cortical and subcortical analyses. However, as
we retained the AHBA ontological labels and simply re-
annotated the hippocampus as subcortex, this step is
reasonable.

Co-registration of AHBA and Neurosynth memory
map

To allow a comparison of spatial similarity between
neuroimaging and AHBA maps of differing resolutions,
both maps were co-registered into a common 3D stereo-
tactic brain space (Fox et al., 2014). This was done by
using the MNI coordinates provided by AHBA for repre-
senting the transcriptome sampling points in MNI152
template space. This was also the space used by the
Neurosynth map. The Neurosynth map was used as a
mask for the AHBA map, so that only the overlapping
areas were included in the correlation analysis (Fox et al.,
2014). Due to the limited availability of hemispheres sam-
pled (six left and two right hemispheres), we used only the
left hemispheres, separated into cortical and subcortical
regions. In subsequent steps, the cortical and subcortical
analyses were kept separate. Besides providing insight

continued
separately for the cortical and subcortical regions, and for memory and motor functions, deriving a ranked gene list L per analysis
(contains genes and mean r value). C, Functional characterization of each L with biologically meaningful gene sets with GSEA
Pre-ranked analysis (dotted lines connecting L and gene sets represent the clustering of genes into enriched gene sets), yielding
positively and negatively scoring gene sets S� and S�. D, Assessing differences and the overlap between cortical and subcortical
memory genes. E, Identification of candidate genes associated with the cognitive function and brain region, operationalized as the
subset of genes driving the enrichment score of the significantly enriched gene sets found using GSEA Pre-ranked analysis. This
produced two candidate gene lists, CL� and CL�, containing highly positively and negatively correlated genes from S� and S�,
respectively. F, Literature review of each CL quantifying the genes associated with the target or control cognitive function. G,
Assessing framework validity and precision with each of eight CLs. See Extended Data Figure 1-1 for a visualization of GRB14 gene
expression in the AHBA, Extended Data Figure 1-2 for a visualization of the Neurosynth maps, and Extended Data Figure 1-3 for the
cortical and subcortical regions used in the spatial correlation analysis.
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into the separate cortical and subcortical genetic mech-
anisms, this also avoided confounds from their divergent
transcriptional profiles (Richiardi et al., 2015). We then
matched the smoothing of both maps by smoothing the
AHBA with a 6mm radius sphere. At the end of this step,
there remained on average 93 memory (range: 72–107)
and 65 motor cortical (range: 55–76) data points, and on
average 40 memory (range: 25–71) and 43 motor subcor-
tical (range: 24–69) data points per individual. It is possi-
ble that the coregistration of AHBA and Neurosynth maps
may be affected by errors introduced during the MRI to
MNI coordinate transformation by AHBA. However, the
Allen Institute transformed the MRI to MNI coordinates
using standard methods for in cranio and ex cranio brains
(four donor brains were imaged ex cranio), and we en-
sured reasonable coregistration by visually inspecting the
resulting maps.

Spatial correlation analysis of AHBA and Neurosynth
data

To obtain spatial correlation values per gene, we relied
on a tool that correlates the spatial AHBA and neuroim-
aging maps (Yarkoni et al., 2011; Fox et al., 2014). Each
datapoint used in correlation is a point in space, with a
normalized gene expression intensity value and a neuro-
imaging map z score. For a gene associated with memory,
we would expect high spatial similarity between both
AHBA and Neurosynth maps, i.e., a pattern of high gene
expression within areas highly relevant for memory and
vice versa. This would be reflected in a high mean corre-
lation value for that gene. We applied the spatial analysis
separately for cortical and subcortical regions (Fig. 1B).
An approximate random effects analysis was used to
account for individual gene expression variability and to
counter the sparse cortical sampling in the AHBA maps.
Donor regression slope and intercept were modeled indi-
vidually. We subsequently obtain each gene’s mean cor-
relation value (averaged across the six donors), which was
the statistic of interest. From this step, we obtained four
lists L of 15,625 genes, for memory and motor function,
and the respective cortical and subcortical regions.

Identifying biological processes of cortical and
subcortical memory

We used a gene set analysis tool (GSEA Pre-ranked,
GenePattern module, version 6.0.5) to identify sets of
genes associated with common biological functions (Fig.
1C). The four lists of genes L were ranked by mean
correlation value (the ranking statistic used in this case)
and passed to GSEA Pre-ranked. We analyzed each list L
with GSEA Pre-ranked with the default parameters, in-
cluding weighted scoring using the Gene Ontology Bio-
logical Process library (c5.bp.v6.0.symbols.gmt). GSEA
Pre-ranked looks separately at the top and bottom of
each list L for genes that overlap with each gene set in the
database (Mootha et al., 2003; Subramanian et al., 2005).
This overlap or gene set enrichment was assessed by
weighted scoring based on mean correlation (r value).
This returns a normalized enrichment score, a significance
p value, and an FDR q value (across all gene sets tested)
for each enriched gene set. From the top positively and

negatively correlated genes in each list L, we obtained
separate sets S� and S� of positively and negatively
enriched gene sets, respectively. For subsequent analy-
ses, we only used all gene sets with FDR q � 0.05. Note
that the motor cortical (–) analysis (negatively correlated
genes from the motor cortical analysis) did not have any
gene sets surviving FDR � 0.05, and thus was not used in
subsequent analyses, i.e., biological processes nor can-
didate genes as output. Thus, this effectively meant eight
S� and seven S� usable sets for subsequent steps. For
this analysis and subsequent steps, genes that are found
in �1 significantly enriched gene set are termed memory
genes, as opposed to the top-10 memory genes identified
below.

Visualization of significantly enriched gene sets
To identify the overall biological themes across gene

sets. we grouped gene sets into networks by the genes
that they share (Fig. 1C). For each pair of sets S� and S�,
we input their gene sets into the Cytoscape network
visualization software, and included the gene sets with
FDR q � 0.05. We then used the Enrichment Map app to
construct the gene set networks and annotated them with
the Wordcloud extension for subsequent interpretation
(Cline et al., 2007; Merico et al., 2010; Oesper et al., 2011).
This was done using the default settings except for a
custom FDR q value threshold of 0.05 (i.e., FDR � 0.05).
This step returned four annotated enrichment maps for
the list L of each cognitive function and for each of cortical
and subcortical areas.

Functional annotation of overlapping genes
We used the ToppGene suite (with Gene Ontology Bi-

ological Process library) to functionally cluster memory
genes (identified in the GSEA analysis) that are (1) cortex
specific, (2) subcortex specific, (3) and shared between
both (Fig. 1D; Chen et al., 2009). From the output, we
thresholded biological process gene sets as those that
satisfied FDR � 0.05. This returned three lists of gene
sets, one for each type of gene above.

Identifying candidate genes associated with cortical
and subcortical memory

To identify the top-10 genes most likely to be relevant
to the cognitive function, we identified genes frequently
appearing across the gene sets with the LEA (Fig. 1E;
Mootha et al., 2003; Subramanian et al., 2005). For the
analysis of each cognitive function in cortical and subcor-
tical regions, we input the respective gene sets with FDR
q � 0.05 (javaGSEA desktop application). LEA then iden-
tified the genes that appeared frequently across the
leading-edge subset genes across gene sets in S� or S�

(Subramanian et al., 2005; Fleming and Miller, 2016). We
ranked genes by the number of leading-edge gene sets
they enrich; in the case of a tie in the number of gene sets,
we rank them by the mean spatial correlation value. The
top-10 genes appearing most frequently in the positively
and negatively enriched gene sets were designated as the
candidate gene list CL. The outputs were seven candidate
gene-cognition association lists CL of 10 genes each for
all S� and S�.
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Literature review of genetic signatures
To quantify the number of candidate gene “hits” for the

memory analysis, we conducted a literature review for
each gene list CL and counted the number of gene-
memory (i.e., true positives) or gene-motor function asso-
ciations (i.e., false positives; Fig. 1F). This was done by
reviewing experimental literature on Google Scholar, via a
search query: [“gene name” AND (“memory” OR “amne-
sia” OR “Alzheimer’s” OR “dementia”)] and [“gene name”
AND (“motor function” OR “motor coordination” OR “lo-
comotor” OR “ataxia” OR “motor learning” OR “Parkin-
son’s” OR “Huntington’s”)], respectively. The same was
repeated for the motor analysis for the respective true
positives and false positives. The disorders were selected
for keyword search because they prominently feature
deficiencies in memory and motor functioning. Strong
evidence included studies that employed in vivo gene
manipulations, mutants and pharmacological interven-
tions, while weak evidence included computational gene
associations, in vitro studies, differential gene expression
studies and human case studies. Literature evidence only
counted as validation if it implicated the corresponding
brain area, i.e., cortical or subcortical. As such, evidence
of a given gene’s role solely in the non-analyzed brain
region was not counted. For example, if a paper showed
that the knock-out of gene A solely in the subcortex leads
to memory deficits, it would not count as evidence for the
analysis of cortical memory.

Correlation difference in memory and motor
analyses

If the method is valid, memory genes should have a
higher average correlation value from the memory analy-
sis compared with the motor analysis, and vice versa for
motor genes and the motor analysis r value. For each
gene, this was calculated by subtracting its motor func-
tion r value from the memory r value, with a positive
difference counting toward the method’s effectiveness
(Fig. 1G). Note that for the memory r values from the
negative gene lists (e.g., memory cortical -), we multiply
the r value difference with –1 to express this difference as
a positive value, consistent with the positive memory gene
lists. We then take the average of all genes for each set S
that satisfy FDR q � 0.05 (same threshold as enrichment
map visualization) to obtain seven such values. As the
number of genes per set S is different, we bootstrapped
the number of correlation difference values used for cal-
culating the average correlation difference value per set.
This was done separately for the memory and motor
analyses by repeatedly subsampling the correlation dif-
ferences (10,000 iterations) to the minimum number of
genes in memory (n � 231) and motor sets (n � 146),
respectively. We visualized this as a boxplot for each of
the seven sets, with the bootstrapped mean and 95th
percentiles (whiskers) for memory and motor analyses. If
the baseline does not fall within the 95th percentile dis-
tribution (i.e., whiskers do not overlap with the baseline of
zero) the score is deemed significantly different from
baseline (p � 0.05).

Assessing method effectiveness in identifying
candidate genes

We quantified method effectiveness based on the prior
literature review (Fig. 1G). To do so, we calculated the
chance probability of obtaining N memory genes per gene
list. This is done by selecting N memory genes (without
replacement) from the pool of known memory or memory-
related disorder genes (n � 644) out of all 15,625 genes
analyzed. For example, if 10 out of 10 genes in the gene
list are memory genes, the chance probability of this
occurring is 1.32 � 10�14. The same was done accord-
ingly for motor function and the motor function genes (n �
104). These memory genes were compiled from three
sources: (1) the literature review above; (2) the biological
function gene sets “GO:0007611 Learning or memory,”
from database AmiGO2 (Carbon et al., 2009; version
2.4.26, release date 2016-08); and (3) van Cauwenberghe
et al. (2016). The motor-related genes (motor or motor-
related disorder) were obtained from (1) the literature
review above, (2) the biological function gene sets “GO:
0061743 motor learning” and “GO:0061744 motor behav-
ior” from database AmiGO2 (Carbon et al., 2009), and (3)
Lin and Farrer (2014).

Precision score for memory and motor analyses
We asked, of a given memory gene list with genes

labeled as memory genes, how many of these are actually
related to memory. We quantified this by calculating a
precision score (Fig. 1G). We first determined the true
positives (i.e., genes associated with memory from the
literature review) and false positives (i.e., genes associ-
ated with motor function). The literature evidence was
weighted such that for true positives, strong evidence and
weak evidence (defined above) received a full point and
half-point respectively. For each gene list, we then deter-
mined the method’s precision score by dividing “true
positives” by the sum of true positives and false positives
(Eqs. 1, 2). If the method is precise, for memory analyses,
the memory precision scores should be above 0.5 and
motor score below 0.5, and vice versa. We plotted the
memory and motor precision scores for each gene list
(ranging from 0 to 1), and the difference between these
scores (ranging from –1 to 1). Ideally, the difference
should be greater than zero. In the following equations,

Memory precision score �
(0.5 Memoryw � Memorys)

((0.5 Memoryw � Memorys) � (0.5 Motorw � Motors))
,

(1)

Motor precision score �
(0.5 Motorw � Motors)

((0.5 Memoryw � Memorys) � (0.5 Motorw � Motors))
,

(2)

Memorys � number of genes with strong evidence for
its association with memory; Memoryw � number of
genes with weak evidence for its association with mem-
ory; Motors � number of genes with strong evidence for
its association with motor function; and Motorw � number
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of genes with weak evidence for its association with
motor function.

Data availability statement
All genetic and neuroimaging data used are available

from the AHBA (https://human.brain-map.org) and Neu-
rosynth (https://www.neurosynth.org). The scripts for pre-
processing the transcriptome are available at https://
github.com/BMHLab/AHBAprocessing. The correlation
scripts and input data are available for non-commercial
use in Extended Data 1 and at https://github.com/PK-HQ/
geneCognitionDiscovery.

Results
AHBA and Neurosynth maps

For identifying whole-brain adult human memory genes,
we first needed to conduct the spatial correlation analysis
between 3D high-resolution neuroimaging and transcrip-
tome maps of the adult human brain. As such, we used
the high density, whole human brain AHBA transcriptome,
and the Neurosynth memory association map of each
voxel’s association with memory in general as input da-
tasets (Yarkoni et al., 2011).

The AHBA was derived from six donor brains, and
contains whole genome human brain gene expression in
the left cortical and subcortical regions (N � 6; Fig. 1A;
see example visualization in Extended Data Fig. 1-1;
Hawrylycz et al., 2012). The Neurosynth memory associ-
ation map is a meta-study map (N � 2744) which repre-
sents each brain voxel’s relevance for memory (as
opposed to other cognitive functions), specified by posi-
tive z scores (Fig. 1A; see visualization of memory and
motor function maps in Extended Data Fig. 1-2; Yarkoni
et al., 2011). Note that the usage of memory here refers to
memory in general, as the map was constructed from
memory-related neuroimaging studies that employ multi-
ple types of memory tasks (Yarkoni et al., 2011). We
co-registered both maps into a common MNI152 space.
The memory areas in the memory association map were
used to define the usable AHBA samples for the subse-
quent spatial correlation analysis.

Spatial similarity analysis
Using these datasets, we sought to isolate the genes

with high spatial correlation values between their gene
expression and memory term maps for subsequent anal-
ysis steps, as they are most likely related to memory (Fox
et al., 2014). We conducted the spatial similarity analysis
between the AHBA and Neurosynth association maps
separately for cortical and subcortical regions due to their
marked differences (see Introduction; the list of cortical
and subcortical regions is available in Extended Data Fig.
1-3), and for memory and motor function (see an example
of spatial correlation in Fig. 2). Each analysis yielded a list
L, which contained the mean correlation values of 15,625
genes used for subsequent ranking (Fig. 1B).

We subsequently ranked each list L. A positive corre-
lation indicates higher gene expression in areas relevant
for memory, and a negative correlation implies lower ex-
pression in areas relevant for memory. The top-10 posi-

tively and negatively correlated genes for the memory
cortical and subcortical analyses are shown in Table 1
(see the spatial correlation value of all genes in Extended
Data Table 1-1). There were more negatively correlated
genes than positively correlated genes for both cortical
and subcortical analyses of memory (Extended Data Ta-
ble 1-1). We found 8383 positively and 7243 negatively
correlated genes for the cortical areas, and 7642 posi-
tively and 7984 negatively genes for the subcortical areas.

Distinct gene expression profiles associated with
cortical and subcortical memory

Following the spatial correlation analyses, we aimed to
define the gene expression profiles related to cortical and
subcortical memory in a comprehensive manner. To iden-
tify and characterize sets of genes that work toward a
common biological function (i.e., gene sets), we analyzed
each of the cortical and subcortical lists L with GSEA
Pre-ranked (Fig. 1C). This yielded positively scoring and
negatively scoring gene sets, derived from the positively
and negatively correlated genes of L, respectively. These
gene sets were then grouped into functionally related
clusters, and automatically annotated with biological
themes (Cline et al., 2007; Merico et al., 2010; Oesper
et al., 2011).

Overall, the cortex and subcortex had distinct biological
themes that were previously found associated with mem-
ory. For cortical memory, GSEA revealed 28 positive and
29 negative significantly enriched gene sets. Visualization
of the enrichment network showed that these gene sets
were grouped into five distinct clusters (Fig. 3; the com-
plete GSEA results are in Extended Data Fig. 3-1), with
gene sets within each cluster sharing enriched genes.
These gene sets were found to be related to memory. The
positive cluster P1 contained gene sets implicated in
immune response and Fc� receptor signaling (Fernandez-
Vizarra et al., 2012; Marin and Kipnis, 2013). P2 was
implicated in interferon gamma signaling (Litteljohn et al.,
2014), P3 in transmembrane calcium ion transport and P4
in actin filament assembly (Krucker et al., 2000; Lam-
precht, 2011). The negative cluster N2 contained gene
sets involved in chromatin dynamics, epigenetic regula-
tion, and immune cell differentiation (Kim and Kaang,
2017).

For subcortical memory, GSEA revealed 50 positive
and 14 negative significantly enriched gene sets. Visual-
ization of the enrichment network showed that these gene
sets were grouped into three distinct clusters (Fig. 4; the
complete GSEA results are in Extended Data Fig. 4-1).
Similarly, these gene sets were found to be related to
memory. The positive cluster P1 is implicated in synaptic
transmission and synaptic plasticity. It also included gene
sets involved in endocytosis and exocytosis, neurotrans-
mitter secretion, long-term potentiation (Stuchlik, 2014),
glutamate receptor signaling, and neuron projection mor-
phogenesis (Kasai et al., 2010). The negative cluster N1 is
related to transcription and translation processes (Jarome
and Helmstetter, 2014; Alberini and Kandel, 2015), and
cluster N2 to glial cell and oligodendrocyte differentiation
(Hertz and Chen, 2016; Pepper et al., 2018).
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To identify differences and overlaps in the cortical and
subcortical genetic profiles, we identified and character-
ized the different and shared (1) biological processes as
shown in the enrichment maps, and (2) memory genes
(i.e., all genes found in �1 enriched gene set; Fig. 1D). We
found a low overlap of 2.5% of gene sets (N � 3) and
9.6% of genes (N � 135) between cortical and subcortical
regions (Fig. 5; the complete list of distinct and overlap-
ping genes is in Extended Data Fig. 5-1). The overlapping
genes were involved in memory-related processes of pro-
tein transport, transcriptional regulation, synaptic plastic-
ity and glutamate receptor signaling (Peng et al., 2011;
Rosenberg et al., 2014; Alberini and Kandel, 2015;
Table 2; full output of gene sets and genes from Top-
pGene in Extended Data Table 2-1). These include genes
involved in the Arp2/3 complex, GABA and AMPA ligand-
gated ion channels which are critical for memory function
(Gasbarri and Pompili, 2014; Basu et al., 2016; Takemoto
et al., 2017; Extended Data Table 2-1). Cortex-specific
genes were involved in memory-associated processes
such as DNA repair, epigenetic regulation, immunity and
IFN-� signaling (Marin and Kipnis, 2013; Litteljohn et al.,
2014; Kim and Kaang, 2017; Hou et al., 2018; Extended
Data Table 2-1). Subcortex-specific genes are involved in
neurogenesis, dendrite morphogenesis, glial cell differen-
tiation and myelination (Hertz and Chen, 2016; Kao et al.,

Figure 2. An example of spatial similarity analysis output. The expression levels of the top-correlated cortical gene, GRB14, is
visualized as a function of the Neurosynth map’s voxel-wise relevance to memory function (z score). Normalized gene expression
(y-axis) plotted against neuroimaging map z scores (x-axis). Each colored regression line represents the best-fit line for each of six
donors (colors); the translucent band around each line represents the 95% confidence interval estimate.

Table 1. Spatial correlation analysis for memory function

Correlation
polarity

Cortical analysis Subcortical analysis

Gene Mean r Gene Mean r
� GRB14 0.24 NEUROD6 0.66

DYRK3 0.21 NEUROD1 0.66
FILIP1 0.21 NPTXR 0.65
SPHKAP 0.21 PLEKHG5 0.65
TMTC1 0.21 NNMT 0.64
TSPAN2 0.21 LRRC2 0.64
S100A10 0.21 C9orf16 0.64
HEYL 0.20 MICAL2 0.64
FZD7 0.20 SLC17A7 0.64
KCTD12 0.20 DUSP4 0.64

� NRAP –0.25 CRNDE –0.64
DLGAP1-AS4 –0.22 FAM222A –0.63
CTNNAL1 –0.21 CRABP1 –0.62
FGF18 –0.20 NTM-AS1 –0.62
MIR124-2HG –0.19 SELENOP –0.62
HIST1H1D –0.19 KIF19 –0.61
TDRD1 –0.19 LOC100506725 –0.61
SLC24A4 –0.18 CA14 –0.61
CCDC144B –0.18 ZFHX4 –0.61
LINC00476 –0.18 LINC00844 –0.61

Top-10 positively and negatively correlated genes from the memory analy-
sis, ranked by the mean correlation magnitude across six donor brains. The
positively and negatively correlated genes are listed separately for cortical
and subcortical areas. See Extended Data Table 1-1 for the complete list of
genes and respective r values.
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2018; Pepper et al., 2018; Extended Data Table 2-1). Note
that the same gene set can appear both in the cortical-
specific and subcortical-specific biological processes.
For instance, the memory gene sets is enriched in both
regions, but in each case, the gene set enrichment is
driven by distinct genes (Extended Data Table 2-1). This is
because different genes can be relevant for, and thus
increase enrichment for the same biological process gene
set.

Core differentially expressed genes related to
cortical and subcortical memory

To identify the top-10 memory genes that are most
likely linked to human memory function for future experi-
mental investigation, we identified genes relevant for mul-
tiple gene sets obtained above with the LEA (Fig. 1E;
Subramanian et al., 2005; Darby et al., 2016; Fleming and
Miller, 2016). Previous work has shown that such genes
that drive the enrichment of multiple gene sets are more
likely related to the phenotype analyzed, i.e., memory
function in this case (Subramanian et al., 2005; Darby
et al., 2016; Fleming and Miller, 2016). The combination of
GSEA and LEA were previously effective in identifying
genetic signatures of cognitive functions (Thomassen
et al., 2008; Ersland et al., 2012; Lee et al., 2013), includ-
ing episodic and working memory (Heck et al., 2014;

Luksys et al., 2015). We applied LEA to the positively and
negatively scoring gene sets above, followed by selecting
the top-10 genes appearing most frequently across the
leading-edge subsets of the gene sets. These genes were
then validated with animal model literature, which were
classified as strong or weak evidence supporting the link
between the gene and memory function (Fig. 1F). Strong
evidence was comprised of gene manipulation or drug
treatment studies, e.g., gene knock-out leading to mem-
ory alteration. Weak evidence encompassed correlational
or computational studies, such as gene upregulation that
correlated with enhanced memory performance.

For cortical memory, nine out of 10 positively correlated
genes were previously implicated in memory function
(Table 3; full list of cortical memory genes and literature
review Extended Data Table 3-1, complete LEA output in
Extended Data Table 3-2). Genes PRKCD (Etcheberriga-
ray et al., 2004; Conboy et al., 2009), RAC1 (Haditsch
et al., 2009; Oh et al., 2010), LIMK1 (Todorovski et al.,
2015), and CDC42 (Kim et al., 2014; Zhang et al., 2016)
had strong associations with memory. For the corre-
sponding negatively correlated candidate genes, all 10
genes had strong evidence supporting their role in mem-
ory. These were all genes encoding the histone H4 pro-
tein, which was linked to memory performance (Peleg
et al., 2010). Deregulation of histone H4 acetylation in

Figure 3. Enrichment map visualization for cortical memory. Clusters are labeled with P for positive, N for negative. Gene set clusters
were found to be related to memory. Positive clusters were associated with immune signaling, calcium transport and actin filament
assembly. The negative cluster contained gene sets involved in chromatin dynamics and epigenetic regulation. See Extended Data
Figure 3-1 for the full output from GSEA Pre-ranked.

Figure 4. Enrichment map visualization for subcortical memory. Clusters are labeled with P for positive, N for negative. Gene set
clusters were found to be associated with memory. Positive clusters were associated with synaptic transmission, long-term plasticity,
glutamate signaling, and neurite morphogenesis. Negative clusters included gene sets involved in transcription and translation, and
glial cell differentiation. See Extended Data Figure 4-1 for the full output from GSEA Pre-ranked.
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aged mice was linked to memory impairment, and rein-
stating this regulation improved their memory.

For subcortical memory, all 10 positively correlated
genes were previously implicated in memory function
(Table 4; full list of subcortical memory genes and litera-
ture review in Extended Data Table 4-1; LEA results in
Extended Data Table 4-2). Genes CDK5, NLGN1, RAB3A,
STX1A, SNCA, SYT1, and UNC13A were strongly linked
to memory (Fujiwara et al., 2006; Yang et al., 2007; Liu
et al., 2009; Guan et al., 2011; Kokhan et al., 2012; Bie
et al., 2014; Mishiba et al., 2014; Böhme et al., 2019).
Seven out of 10 negatively correlated candidate genes
had weak evidence implicating them in memory. These
were genes encoding ribosomal subunits, which were
differentially expressed in rodents that display better

Figure 5. Overlap between cortical and subcortical memory
gene sets and genes. A, Number of overlapping cortical and
subcortical memory gene sets derived from GSEA. B, Number of
overlapping cortical and subcortical memory genes derived from
GSEA. Light green denotes cortical genes, dark green denotes
subcortical genes. See Extended Data Figure 5-1 for the list of
gene sets and genes that are shared or distinct across cortex
and subcortex.

Table 2. Comparison of cortical and subcortical genes associated with memory

GO term p q
Common across cortex and subcortex Protein targeting to ER 8.2 � 10–67 1.9 � 10–63

mRNA catabolic process 3.5 � 10–41 8.5 � 10–39

Regulation of synaptic plasticity 4.3 � 10–9 1.1 � 10–7

Glutamate receptor signaling pathway 4.1 � 10–9 1.1 � 10–7

Cortex only DNA repair 6.2 � 10–29 7.3 � 10–27

Regulation of gene expression, epigenetic 3.7 � 10–27 3.8 � 10–25

Interferon-gamma-mediated signaling pathway 3.4 � 10–23 2.4 � 10–21

Regulation of neurogenesis 8.9 � 10–16 4.1 � 10–12

Subcortex only Neurogenesis 3.6 � 10–117 5.6 � 10–114

Neuron projection morphogenesis 5.4 � 10–96 2.4 � 10–93

Glial cell differentiation 6.0 � 10–42 7.5 � 10–40

Myelination 2.1 � 10–30 1.6 � 10–28

We identified biological processes linked to memory genes shared or distinct across cortex and subcortex. GO � gene ontology biological process library; p
and q refer to p value and FDR q value, respectively. See Extended Data Table 2-1 for the complete list of enriched gene sets and genes from ToppGene.

Table 3. Candidate gene lists from cortical analyses of memory

CL Gene
# leading

edge subsets
mean

r

Associated cognitive function

Mems Memw Mots Motw
Memory
Cortical
�

PRKCD 9 0.10 Y
RAC1 9 0.07 Y
HLA-DRB5 8 0.12 Y
HLA-DRB1 8 0.09 Y
HLA-DRB4 8 0.09 Y
HCK 8 0.09 Y
HLA-DRB3 8 0.08
LIMK1 7 0.13 Y Y
CDC42 7 0.11 Y
VAV1 6 0.15 Y

Memory
Cortical
�

HIST1H4A 23 –0.18 Y Y
HIST1H4E 23 –0.17 Y Y
HIST1H4H 23 –0.13 Y Y
HIST1H4I 23 –0.12 Y Y
HIST4H4 23 –0.11 Y Y
HIST1H4J 23 –0.11 Y Y
HIST1H4B 23 –0.10 Y Y
HIST1H4K 23 –0.10 Y Y
HIST1H4F 23 –0.09 Y Y
HIST1H4D 23 –0.09 Y Y

Candidate gene lists for the memory analysis of cortical regions, from positively and negatively correlated gene lists. Genes are ranked by the number of
leading-edge subsets they appear in, and subsequently by mean r value. CL: candidate gene list; # leading-edge subsets: number of leading-edge subsets
that the gene was found in; Mems: strong evidence for memory function; Memw: weak evidence for memory function; Mots: strong evidence for motor func-
tion; Motw: weak evidence for motor function; �: positively correlated candidate gene list; �: negatively correlated candidate gene list. See Extended Data
Table 3-1 for the literature review supporting the cortical gene-cognition associations and Extended Data Table 3-2 for the complete LEA output for cortical
analyses.

New Research 10 of 17

November/December 2019, 6(6) ENEURO.0283-19.2019 eNeuro.org

https://doi.org/10.1523/ENEURO.0283-19.2019.t4-1
https://doi.org/10.1523/ENEURO.0283-19.2019.t4-2
https://doi.org/10.1523/ENEURO.0283-19.2019.f5-1
https://doi.org/10.1523/ENEURO.0283-19.2019.t2-1
https://doi.org/10.1523/ENEURO.0283-19.2019.t3-1
https://doi.org/10.1523/ENEURO.0283-19.2019.t3-2


memory performance (Wang et al., 2003; Kong et al.,
2009; Winbush et al., 2012; Katz and Lamprecht, 2015;
Oka et al., 2016; Zhang et al., 2018).

Performance assessment of framework
If our unsupervised approach is valid, for the memory

analysis we expect that memory genes should have a

higher correlation value from the memory analysis com-
pared with the motor analysis (i.e., sanity check; Figs. 1G,
6). Furthermore, in the top-10 memory genes, we expect
that a greater number of memory genes in the memory
analysis than expected by chance (i.e., statistical signifi-
cance; Tables 5, 6), and that we find more memory genes
than motor function genes (i.e., method precision; Fig. 7).

Table 4. Candidate gene lists from subcortical analyses of memory

CL Gene
# leading

edge subsets
mean

r
Associated cognitive function

Mems Memw Mots Motw
Memory
subcortical
�

CDK5 27 0.26 Y Y
NLGN1 26 0.51 Y
UNC13B 26 0.38 Y
RAB3A 25 0.40 Y Y
STX1A 24 0.57 Y
SYT12 23 0.44 Y
STX1B 22 0.45 Y
SNCA 21 0.44 Y Y
SYT1 21 0.39 Y Y
UNC13A 20 0.46 Y Y

Memory
subcortical
–

RPL34 8 –0.54 Y
RPS12 8 –0.49
RPS13 8 –0.47 Y
RPS15A 8 –0.44 Y
RPS29 8 –0.44
RPL11 8 –0.44 Y
RPL37A 8 –0.44
RPL10 8 –0.44 Y
RPS25 8 –0.44 Y
RPS27 8 –0.43 Y

See Table 2 for notation, Extended Data Table 4-1 for the literature review supporting the subcortical gene-cognition associations, and Extended Data Table
4-2 for the complete LEA output for subcortical analyses.

Figure 6. Bootstrapped correlation value differences for all cortical and subcortical candidate genes of memory and motor analysis.
For a given memory gene, we calculated the difference between memory and motor analysis r values by subtracting motor r from
memory r. If the memory r was negative, we took the negative of the difference (to get a positive value). Vice versa for the motor genes.
For each cognitive function, we subsampled the number of genes used to the lowest number for calculating the bootstrapped mean
difference (231 memory genes and 146 motor genes, respectively, 10,000 iterations). If the 95th percentile did not overlap with the
baseline of zero, the bootstrapped difference is considered significant (p � 0.05). Note that for the motor cortical analysis, no
negatively correlated genes survived the threshold and thus no motor cortical (–) gene list is shown here. See Extended Data Figure
6-1 for the complete list of correlation value differences for genes used in the bootstrap analysis. �denotes p � 0.05.
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Using the candidate gene correlation values, we show
that the memory genes displayed a significant positive
difference between memory analysis r value and motor
analysis r value, as the 95th percentile (whiskers) did not
overlap with zero (Fig. 6; all gene correlation values used

in the bootstrap analysis in Extended Data Fig. 6-1). As
such, our approach performs as expected.

We found that the method was highly effective. For all
memory cortical and subcortical gene lists, the probability
of obtaining the number of memory genes observed was

Table 5. Probability of observing the number of memory or motor genes by chance

Cognitive function Brain region Gene list # cognitive function genes (of 10) p
Memory Cortical � 9 3.3 � 10–13

– 10 1.3 � 10–14

Subcortical � 10 1.3 � 10–14

– 7 2.0 � 10–10

Motor Cortical � 6 7.5 � 10–14

– n/a n/a
Subcortical � 8 2.9 � 10–18

– 10 1.1 � 10–22

We calculated the chance probability of obtaining N memory genes per gene list (without replacement), by using the proportion of known memory genes out
of the 15,625 genes analyzed. Vice versa for motor genes. Note that for the motor cortical (–) analysis, no genes survived the threshold, and thus, no gene
list is shown here. See Extended Data Table 5-1 for the known memory and motor function genes and derived effectiveness scores across all gene lists.

Figure 7. Precision scores for top-10 cortical and subcortical candidate genes of memory and motor analysis. For a given
memory gene list, we calculated the memory and motor precision scores with Equations 1, 2 and their difference. Ideally,
memory gene lists should obtain a memory score above 0.5, and a motor score below 0.5, and vice versa for the motor genes.
Note that for the motor cortical analysis, no negatively correlated genes survived the threshold and thus no motor cortical (–)
gene list is shown. See Extended Data Figure 7-1 for the candidate genes of each analysis and the derived method precision
score for each gene list.

Table 6. Statistical table

Results section Data structure Type of test Power
Figs. 3, 4 Gene set enrichment analysis Kolmogorov–Smirnov test FDR � 0.05
Figs. 5, 6 Distribution of bootstrapped

correlation r value difference
Overlap of 95th percentiles

with baseline of zero
p � 0.05

Table 4 Distribution of known memory and
motor genes out of 15,625 genes

Probability of obtaining n memory/motor
genes out of 10 without replacement

p � 0.001

Statistical tests for the gene set enrichment analysis, bootstrapped correlation r value differences between the memory and motor analyses and the probabil-
ity of obtaining n memory/motor genes by chance from a known pool of memory and motor genes.
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significantly above chance (Table 5; full list of memory-
related and motor function-related genes that constitute
the chance probability in Extended Data Table 5-1). Like-
wise, for all motor cortical and subcortical gene lists, the
probability of deriving the number motor genes observed
was highly significant as well.

Using the putative gene functions inferred from the
literature review, we also found that the method had high
precision, as the difference in top-10 candidate gene list
precision scores are non-negative [except for motor sub-
cortex (–), Fig. 7; calculation of precision values in Ex-
tended Data Fig. 7-1]. These results suggest that the
method is valid and specific in identifying genes associ-
ated with memory and motor function.

Discussion
Taken together, our results show that cortical and subcor-

tical regions involved in human memory possess distinct
genetic signatures. These genetic signatures are in agree-
ment with prior research in animal models of memory, and
were dissociable from the control of motor function. Thus,
we show that the strong similarities between the spatial
patterns of human brain transcriptome and the functional
neuroimaging map of memory can be exploited to highlight
candidate biological processes and genes associated with
human memory for future experimental investigations. This
may contribute to our knowledge of the functional differ-
ences of cortical and subcortical regions in healthy human
memory function and memory disorders.

Presently, human memory evidence is generally derived
from popular non-invasive methods such as GWAS (Well-
come Trust Case Control Consortium, 2007), which iden-
tifies links between gene variants and cognition (Heck
et al., 2014). However, GWAS ignores the spatially dis-
tributed gene expression in the brain by solely analyzing
gene variants in relation to brain or behavioral measures
(Hawrylycz et al., 2012; Mahfouz et al., 2017). Our ap-
proach relies on spatial pattern of gene expression and
identifies genetic profiles related to human memory. Cru-
cially, our unsupervised approach is versatile as it can reveal
unprecedented insights into any human cognitive function of
interest, e.g., decision making. This insight may be espe-
cially useful in the case of functions that are clinically rele-
vant but with a genetic basis that is less understood, e.g.,
attention (ADHD) and language (dyslexia).

To identify general human memory genes that function
across the brain, we compared the differences and the
overlap between cortical and subcortical memory genes
(Fig. 1). Particularly, this overlap comparison is supported
by the existence of genes underlying memory function as a
whole, as in the case of neuronally-expressed immediate-
early genes (IEGs) involved in memory function (Gallo et al.,
2018). IEGs are a broad class of genes that are expressed
in a rapid, transient manner in response to a plethora of
cellular stimuli. Of the neuron-specific IEGs, c-fos, Egr1,
and arc are broadly associated with various facets of
memory across both cortical and subcortical areas. For
example, the blockade of hippocampal c-Fos negatively
impacted spatial long-term memory (Kemp et al., 2013),
and its blockade in either the hippocampus or retro-

splenial cortex induced deficits in the consolidation of fear
memory (Katche et al., 2010; Katche and Medina, 2017).
Such genes are relevant for different subtypes of memory
across both cortical and subcortical areas, which we term
whole-brain general memory genes.

If there are such general memory genes whose function
in memory spans the whole brain, both cortical and sub-
cortical analyses should show overlapping genes. We found
that the cortical and subcortical areas possess largely dis-
tinct genetic profiles, as identified by gene-functional spatial
correlation (Fig. 5). There was no overlap in the top-10
cortical and subcortical memory genes, with some overlap
for memory genes (9.6% out of 1397 genes) and biological
process gene sets (2.5% out of 118 gene sets).

At the biological process level, we found differences in
cortical and subcortical memory. In the cortex, the iden-
tified gene sets included epigenetic regulation and im-
mune signaling. The latter received recent interest as a
central factor in the onset and progression of dementia
(Litteljohn et al., 2014; Kim and Kaang, 2017; Hammond
et al., 2019). In the subcortex, the identified genes are
involved in neurogenesis and glial cell differentiation. Fur-
thermore, we identified gene sets with a less understood
link to memory as well. For instance, astrocytes and
oligodendrocytes were recently discovered to be involved
in linking glial-mediated potassium homeostasis and my-
elination to memory deficits (Hertz and Chen, 2016; Pep-
per et al., 2018). It is still unclear how myelinating
oligodendrocytes may enable plasticity in memory (Pep-
per et al., 2018). Our work suggests that glial cell differ-
entiation may play a complementary role in memory
function, and should be further investigated for a compre-
hensive understanding of cellular contributions to mem-
ory. Overall, this may suggest inherent differences in the
biological processes supporting cortical and subcortical
memory regions. Future work may look into the interplay
of these processes and clarify their differential contribu-
tions toward cortical and subcortical memory function.

At the gene level, enriched genes for cortical and sub-
cortical memory were similarly distinct. Of the enriched
genes that are associated with the biological processes
above (in sets S� and S-), a small proportion of genes
(9.6%, or 135 genes) were shared between cortical and
subcortical regions (Fig. 5). These genes are related to the
Arp2/3 complex, GABA and AMPA ligand-gated ion chan-
nels, and srp-dependent protein localization to the
membrane. The Arp2/3 complex is necessary for the mat-
uration of dendritic spines, hippocampal and extra-
hippocampal AMPA receptors are involved in excitatory
ion channels in memory, and GABA receptor subunits are
part of inhibitory ion channels in memory function (Collinson
et al., 2002; Freudenberg et al., 2016; Spence et al., 2016).
As such, this recapitulates known literature, and hints at
basic requirements for general memory function. Overall, this
may suggest differences due to gross cortico-subcortical dif-
ferences in transcriptome profiles and function in healthy
memory function and disease (Huber et al., 1986; Salmon
and Filoteo, 2007). Future work may look into how the
convergence and divergence between cortical and sub-
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cortical genetic profiles and how those enable cortico-
subcortical-specific functions in memory.

Additionally, our approach also identified memory-
associated genes with poorly understood relations to
memory. For example, the MIS18BP1 gene was identified
in the subcortical memory genes (Extended Data Table
2-1). This gene is required for recruitment of centromere
proteins to centromeres and allow normal chromosome
segregation during mitosis (Moree et al., 2011). It is un-
clear whether such cell division genes play a role in
memory across subcortical areas. However, the gene has
been linked to hippocampal neurogenesis, which is criti-
cal for hippocampal function in memory (Shin et al., 2015;
Gonçalves et al., 2016). Such lesser known genes consti-
tute a crucial contribution of our framework, as their im-
mediate link to memory yet to be established, and should
be examined in future research.

Our analyses of gene expression and neuroimaging
maps are not without limitations. These include the limited
sample size, the validity of a text-mining-like approach
with GSEA and Gene Ontology library, and the spatial
resolution of the AHBA. First, the limited donor sample
size and reduced genome coverage after preprocessing
may contribute to a reduced power, but not statistical
precision, of our approach. Although future increase in
sample size may identify more genes using this method,
we found the current results to be robust as our results are
significantly better than chance (i.e., statistical signifi-
cance). Furthermore, the identified genes were specific to
memory, as demonstrated by the precision of our frame-
work. Second, GSEA utilizes the Gene Ontology library to
identify enriched gene sets, and associates these en-
riched genes with the library’s ontological terms, e.g.,
synaptic plasticity. We concede that the Gene Ontology
library is continually being extended with manual curation
efforts, and thus is vulnerable to being outpaced by the
deluge of recent experimental findings (Baumgartner
et al., 2007; Dutkowski et al., 2013; Gaudet and Dessi-
moz, 2017). As such, it is possible that the database is
incomplete and does not reflect all biological functions
associated with each gene. This may lead to false nega-
tives, where we miss genes that should be considered
enriched. Nevertheless, our approach demonstrates high
effectiveness (as seen in the top-10 memory and motor
function genes) and the results are in concordance with
known experimental literature independent of ontology
libraries. Additionally, unsupervised methods of identify-
ing candidate genes always require manual curation and
selection of these genes for further investigation. Third,
this approach is also limited by the spatial resolution of
the human brain transcriptome. Despite being the most
appropriate human transcriptional atlas with its whole-
genome and high resolution whole-brain coverage, the
AHBA map still has a lower resolution compared to func-
tional imaging maps, especially in the cortex (Hawrylycz
et al., 2011). As such, we expect the precision and sta-
tistical power of our approach to grow as the spatial
resolution and sample size of the AHBA database in-
creases. Furthermore, as the translation of gene mRNA
into a functional product is subject to regulation, donor

brain proteomes may be complementary in identifying
genes linked to memory (Lubec et al., 2003; Park et al.,
2006; Sjöstedt et al., 2015).

Conclusion
Here, using the Allen Institute brain transcriptional atlas

and Neurosynth neuroimaging maps, we demonstrate
that cortical and subcortical memory regions have distinct
genetic signatures. These genetic signatures provide novel
biological processes and molecular targets for understand-
ing of human memory function. Crucially, we hope that our
unsupervised and spatially guided approach may help guide
researchers toward productive gene and biological process
candidates for understanding how complex cognitive func-
tions such as memory may be enabled by the molecular
components of the brain.
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